This paper presents a precise solution to predict the behavior of steel fiber reinforced concrete(SFRC) under the four point bending test(FPBT).All the force components at the beam section(before and after cracking) a...This paper presents a precise solution to predict the behavior of steel fiber reinforced concrete(SFRC) under the four point bending test(FPBT).All the force components at the beam section(before and after cracking) are formulated by applying these assumptions:a realistic stress-strain model is used for concrete behavior in compression,a linear response is considered for the uncracked tension region in a concrete constitutive model,and an exponential relationship is proposed as a stress-crack opening in the crack region which requires two parameters.Then the moment capacity of the critical cracked section is calculated by using these forces and satisfying equilibrium law at the section.Parametric studies are done on the behavior of SFRC to assess the sensitivity of the solution.Finally,this solution is validated with some existing experimental data.The result shows the proposed solution is able to estimate the behavior of SFRC under FPBT.展开更多
The acoustic behavior of double-walled laminated composite panels consisting of two porous and air gap middle layers is studied within the classical laminated plate theory (CLPT). Thus, viscous and inertia coupling ...The acoustic behavior of double-walled laminated composite panels consisting of two porous and air gap middle layers is studied within the classical laminated plate theory (CLPT). Thus, viscous and inertia coupling in a dynamic equation, as well as stress transfer, thermal and elastic coupling of porous material ave based on the Biot theory. In addition, the wave equations are extracted according to the vibration equation of composite layers. The transmission loss (TL) of the structure is then calculated by solving these equations simultaneously. Statistical energy analysis (SEA) is developed to divide the structure into specific subsystems, and power transmission is extracted with balancing power flow equations of the subsystems. Comparison between the present work and the results reported elsewhere shows excellent agreement. The results also indicate that, although favorable enhancement is seen in noise control particularly at high frequencies, the corresponding parameters associated with fluid phase and solid phase of the porous layer are important on TL according to the boundary condition interfaces. Finally, the influence of composite material and stacking sequence on power transmission is discussed.展开更多
文摘This paper presents a precise solution to predict the behavior of steel fiber reinforced concrete(SFRC) under the four point bending test(FPBT).All the force components at the beam section(before and after cracking) are formulated by applying these assumptions:a realistic stress-strain model is used for concrete behavior in compression,a linear response is considered for the uncracked tension region in a concrete constitutive model,and an exponential relationship is proposed as a stress-crack opening in the crack region which requires two parameters.Then the moment capacity of the critical cracked section is calculated by using these forces and satisfying equilibrium law at the section.Parametric studies are done on the behavior of SFRC to assess the sensitivity of the solution.Finally,this solution is validated with some existing experimental data.The result shows the proposed solution is able to estimate the behavior of SFRC under FPBT.
文摘The acoustic behavior of double-walled laminated composite panels consisting of two porous and air gap middle layers is studied within the classical laminated plate theory (CLPT). Thus, viscous and inertia coupling in a dynamic equation, as well as stress transfer, thermal and elastic coupling of porous material ave based on the Biot theory. In addition, the wave equations are extracted according to the vibration equation of composite layers. The transmission loss (TL) of the structure is then calculated by solving these equations simultaneously. Statistical energy analysis (SEA) is developed to divide the structure into specific subsystems, and power transmission is extracted with balancing power flow equations of the subsystems. Comparison between the present work and the results reported elsewhere shows excellent agreement. The results also indicate that, although favorable enhancement is seen in noise control particularly at high frequencies, the corresponding parameters associated with fluid phase and solid phase of the porous layer are important on TL according to the boundary condition interfaces. Finally, the influence of composite material and stacking sequence on power transmission is discussed.