期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Review on Swarm Intelligence and Evolutionary Algorithms for Solving Flexible Job Shop Scheduling Problems 被引量:46
1
作者 Kaizhou Gao Zhiguang Cao +3 位作者 Le Zhang Zhenghua Chen Yuyan Han quanke pan 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第4期904-916,共13页
Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,... Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,employed and improved for solving them.More than 60%of the publications are related to SI and EA.This paper intents to give a comprehensive literature review of SI and EA for solving FJSP.First,the mathematical model of FJSP is presented and the constraints in applications are summarized.Then,the encoding and decoding strategies for connecting the problem and algorithms are reviewed.The strategies for initializing algorithms?population and local search operators for improving convergence performance are summarized.Next,one classical hybrid genetic algorithm(GA)and one newest imperialist competitive algorithm(ICA)with variables neighborhood search(VNS)for solving FJSP are presented.Finally,we summarize,discus and analyze the status of SI and EA for solving FJSP and give insight into future research directions. 展开更多
关键词 EVOLUTIONARY algorithm flexible JOB SHOP scheduling REVIEW SWARM INTELLIGENCE
在线阅读 下载PDF
An improved artificial bee colony algorithm for steelmaking–refining–continuous casting scheduling problem 被引量:14
2
作者 Kunkun Peng quanke pan Biao Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第8期1727-1735,共9页
Steelmaking–refining–Continuous Casting(SCC) scheduling is a worldwide problem, which is NP-hard. Effective SCC scheduling algorithms can help to enhance productivity, and thus make significant monetary savings. Thi... Steelmaking–refining–Continuous Casting(SCC) scheduling is a worldwide problem, which is NP-hard. Effective SCC scheduling algorithms can help to enhance productivity, and thus make significant monetary savings. This paper develops an Improved Artificial Bee Colony(IABC) algorithm for the SCC scheduling. In the proposed IABC, charge permutation is employed to represent the solutions. In the population initialization, several solutions with certain quality are produced by a heuristic while others are generated randomly. Two variable neighborhood search neighborhood operators are devised to generate new high-quality solutions for the employed bee and onlooker bee phases, respectively. Meanwhile, in order to enhance the exploitation ability, a control parameter is introduced to conduct the search of onlooker bee phase. Moreover, to enhance the exploration ability,the new generated solutions are accepted with a control acceptance criterion. In the scout bee phase, the solution corresponding to a scout bee is updated by performing three swap operators and three insert operators with equal probability. Computational comparisons against several recent algorithms and a state-of-the-art SCC scheduling algorithm have demonstrated the strength and superiority of the IABC. 展开更多
关键词 Artificial bee colony Steelmaking–refining–continuous casting Hybrid flowshop scheduling Variable neighborhood search
在线阅读 下载PDF
Solving Multi-Area Environmental/Economic Dispatch by Pareto-Based Chemical-Reaction Optimization Algorithm 被引量:6
3
作者 Junqing Li quanke pan +2 位作者 Peiyong Duan Hongyan Sang Kaizhou Gao 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第5期1240-1250,共11页
In this study, we present a Pareto-based chemicalreaction optimization(PCRO) algorithm for solving the multiarea environmental/economic dispatch optimization problems.Two objectives are minimized simultaneously, i.e.,... In this study, we present a Pareto-based chemicalreaction optimization(PCRO) algorithm for solving the multiarea environmental/economic dispatch optimization problems.Two objectives are minimized simultaneously, i.e., total fuel cost and emission. In the proposed algorithm, each solution is represented by a chemical molecule. A novel encoding mechanism for solving the multi-area environmental/economic dispatch optimization problems is designed to dynamically enhance the performance of the proposed algorithm. Then, an ensemble of effective neighborhood approaches is developed, and a selfadaptive neighborhood structure selection mechanism is also embedded in PCRO to increase the search ability while maintaining population diversity. In addition, a grid-based crowding distance strategy is introduced, which can obviously enable the algorithm to easily converge near the Pareto front. Furthermore,a kinetic-energy-based search procedure is developed to enhance the global search ability. Finally, the proposed algorithm is tested on sets of the instances that are generated based on realistic production. Through the analysis of experimental results, the highly effective performance of the proposed PCRO algorithm is favorably compared with several algorithms, with regards to both solution quality and diversity. 展开更多
关键词 Chemical-reaction OPTIMIZATION algorithm gridbased CROWDING distance multi-area environmental/economic DISPATCH (MAEED) problem multi-objective OPTIMIZATION
在线阅读 下载PDF
Distributed Flow Shop Scheduling with Sequence-Dependent Setup Times Using an Improved Iterated Greedy Algorithm 被引量:14
4
作者 Xue Han Yuyan Han +5 位作者 Qingda Chen Junqing Li Hongyan Sang Yiping Liu quanke pan Yusuke Nojima 《Complex System Modeling and Simulation》 2021年第3期198-217,共20页
To meet the multi-cooperation production demand of enterprises,the distributed permutation flow shop scheduling problem(DPFSP)has become the frontier research in the field of manufacturing systems.In this paper,we inv... To meet the multi-cooperation production demand of enterprises,the distributed permutation flow shop scheduling problem(DPFSP)has become the frontier research in the field of manufacturing systems.In this paper,we investigate the DPFSP by minimizing a makespan criterion under the constraint of sequence-dependent setup times.To solve DPFSPs,significant developments of some metaheuristic algorithms are necessary.In this context,a simple and effective improved iterated greedy(NIG)algorithm is proposed to minimize makespan in DPFSPs.According to the features of DPFSPs,a two-stage local search based on single job swapping and job block swapping within the key factory is designed in the proposed algorithm.We compare the proposed algorithm with state-of-the-art algorithms,including the iterative greedy algorithm(2019),iterative greedy proposed by Ruiz and Pan(2019),discrete differential evolution algorithm(2018),discrete artificial bee colony(2018),and artificial chemical reaction optimization(2017).Simulation results show that NIG outperforms the compared algorithms. 展开更多
关键词 distributed permutation flow shop iterated greedy local search swapping strategy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部