We investigate the surface acoustic wave(SAW)modulation of the exchange bias field(H_(EB))in Py/IrMn films deposited on LiNbO_(3)substrates.We measured the anisotropic magnetoresistance(AMR)of the multilayer film when...We investigate the surface acoustic wave(SAW)modulation of the exchange bias field(H_(EB))in Py/IrMn films deposited on LiNbO_(3)substrates.We measured the anisotropic magnetoresistance(AMR)of the multilayer film when continuous SAW or pulsed SAW were applied and obtained H_(EB).With continuous SAW,the H_(EB)decreases continuously with power.While in the case of pulsed SAW,the H_(EB)first decreases and then stabilizes.Compared to pulsed SAW,the thermal effects from the continuous SAW lead to the continuous decrease of H_(EB)at higher SAW power,which is verified by the measurement of H_(EB)at different temperatures and input currents.Furthermore,our results show that pulsed SAW can effectively avoid thermal effects.The decrease of H_(EB)at smaller power in both continuous and pulsed SAW is mainly due to the SAW-induced dynamic strain field,which leads to a small perturbation in the magnetic moment of the FM layer.Combined with the AMR values measured at different angles during the saturation field,we believe that the SAW-induced dynamic strain field causes a 15°angle between the magnetic moment and the easy axis.Our experiments provide a different approach to manipulating H_(EB),opening up a potential avenue for future manipulation of antiferromagnetic moments.展开更多
We report a theoretical analysis of magnon–magnon coupling in a noncollinear magnetic sandwiched structure with interlayer exchange interaction,which consists of two ferromagnetic layers with perpendicular and in-pla...We report a theoretical analysis of magnon–magnon coupling in a noncollinear magnetic sandwiched structure with interlayer exchange interaction,which consists of two ferromagnetic layers with perpendicular and in-plane magnetic anisotropy,respectively.Based on the Landau–Lifshitz equation,the spin wave dispersion is derived,and then the frequency gap is observed due to the magnon–magnon coupling effect induced by symmetry breaking.The influence of saturation magnetization,exchange coupling interaction,perpendicular magnetic anisotropy,and wave vector on the coupling strength is studied in detail.We find that the coupling strength is strongly dependent on the saturation magnetization and a small saturation magnetization can lead to strong coupling strength.By selecting the appropriate magnetic materials,the ultra-strong coupling regime can be achieved.The precession information in time domain is solved and the alternating change of the precession components in two ferromagnetic layers implies the exchange of energy and information.展开更多
The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films ...The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.展开更多
Antiferromagnet(AFM)/ferromagnet(FM)heterostructure is a popular system for studying the spin–orbit torque(SOT)of AFMs.However,the interfacial exchange bias field induces that the magnetization in FM layer is noncoll...Antiferromagnet(AFM)/ferromagnet(FM)heterostructure is a popular system for studying the spin–orbit torque(SOT)of AFMs.However,the interfacial exchange bias field induces that the magnetization in FM layer is noncollinear to the external magnetic field,namely the magnetic moment drag effect,which further influences the characteristic of SOT efficiency.In this work,we study the SOT efficiencies of IrMn/NiFe bilayers with strong interfacial exchange bias by using spin-torque ferromagnetic resonance(ST-FMR)method.A full analysis on the AFM/FM systems with exchange bias is performed,and the angular dependence of magnetization on external magnetic field is determined through the minimum rule of free energy.The ST-FMR results can be well fitted by this model.We obtained the relative accurate SOT efficiencyξ_(DL)=0.058 for the IrMn film.This work provides a useful method to analyze the angular dependence of ST-FMR results and facilitates the accurate measurement of SOT efficiency for the AFM/FM heterostructures with strong exchange bias.展开更多
We investigated the angle-dependent spin wave spectra of permalloy ring arrays with the fixed outer diameter and various inner diameters by ferromagnetic resonance spectroscopy and micromagnetic simulation.When the fi...We investigated the angle-dependent spin wave spectra of permalloy ring arrays with the fixed outer diameter and various inner diameters by ferromagnetic resonance spectroscopy and micromagnetic simulation.When the field is obliquely applied to the ring,local resonance mode can be observed in different parts of the rings.And the resonance mode will change to perpendicular spin standing waves if the magnetic field is applied along the perpendicular direction.The simulation results demonstrated this evolution and implied more resonance modes that maybe exist.And the mathematical fitting results based on the Kittel equation further proved the existence of local resonance mode.展开更多
In this work, we investigated the influence of phosphorus and magnetic anneal on the soft magnetic properties of electrodeposited FeMnP alloy films prepared by changing sodium hypophosphite concentrations. X-ray diffr...In this work, we investigated the influence of phosphorus and magnetic anneal on the soft magnetic properties of electrodeposited FeMnP alloy films prepared by changing sodium hypophosphite concentrations. X-ray diffraction radiation patterns showed an amorphous structure of electrodeposited alloy films. The saturation magnetization and coercivity value decreased from 586 emu/cc to 346 emu/cc, and 52 Oe to 18 Oe, with the P content increased, respectively. The absorption resonance peak became broad as the P content increased, and the natural resonance frequency decreased from 1.8 GHz to 0.6 GHz, with the P content increasing. Magnetic annealing of samples reduced the magnetic damping, and natural resonance frequency increased by about 1.8 GHz and 3.5 GHz for the sample with lower and higher P content. The film structure with lower P content changed at 300˚C, while the structure remains unchanged for the films with higher P content. Thus, the crystallization temperature could depend on the P content in the film. FeMnP alloy films could be used in high-frequency devices.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12174166 and 12304144)the Fund from Beijing National Laboratory for Condensed Matter Physics(Grant No.2024BNLCMPKF013)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2024-22).
文摘We investigate the surface acoustic wave(SAW)modulation of the exchange bias field(H_(EB))in Py/IrMn films deposited on LiNbO_(3)substrates.We measured the anisotropic magnetoresistance(AMR)of the multilayer film when continuous SAW or pulsed SAW were applied and obtained H_(EB).With continuous SAW,the H_(EB)decreases continuously with power.While in the case of pulsed SAW,the H_(EB)first decreases and then stabilizes.Compared to pulsed SAW,the thermal effects from the continuous SAW lead to the continuous decrease of H_(EB)at higher SAW power,which is verified by the measurement of H_(EB)at different temperatures and input currents.Furthermore,our results show that pulsed SAW can effectively avoid thermal effects.The decrease of H_(EB)at smaller power in both continuous and pulsed SAW is mainly due to the SAW-induced dynamic strain field,which leads to a small perturbation in the magnetic moment of the FM layer.Combined with the AMR values measured at different angles during the saturation field,we believe that the SAW-induced dynamic strain field causes a 15°angle between the magnetic moment and the easy axis.Our experiments provide a different approach to manipulating H_(EB),opening up a potential avenue for future manipulation of antiferromagnetic moments.
基金supported by the National Natural Science Foundation of China(Grant No.52201290)the Natural Science Foundation of Gansu Province(Grant No.24JRRA402)the 9th Research Institute of China Electronics Technology Group Corporation’s open projects(Grant No.2024SK-001-4).
文摘We report a theoretical analysis of magnon–magnon coupling in a noncollinear magnetic sandwiched structure with interlayer exchange interaction,which consists of two ferromagnetic layers with perpendicular and in-plane magnetic anisotropy,respectively.Based on the Landau–Lifshitz equation,the spin wave dispersion is derived,and then the frequency gap is observed due to the magnon–magnon coupling effect induced by symmetry breaking.The influence of saturation magnetization,exchange coupling interaction,perpendicular magnetic anisotropy,and wave vector on the coupling strength is studied in detail.We find that the coupling strength is strongly dependent on the saturation magnetization and a small saturation magnetization can lead to strong coupling strength.By selecting the appropriate magnetic materials,the ultra-strong coupling regime can be achieved.The precession information in time domain is solved and the alternating change of the precession components in two ferromagnetic layers implies the exchange of energy and information.
基金the Natural Science Foundation of Shandong Province(Grant No.ZR2022MA053),the National Natural Science Foundation of China(Grant Nos.11704211,11847233,52301255,12205157,and 12205093)the Funda-mental Research Funds for the Central Universities(Grant No.lzujbky-2022-kb01)+2 种基金China and Germany Postdoctoral Exchange Program(Helmholtz-OCPC)China Postdoctoral Science Foundation(Grant No.2018M632608)Applied Basic Research Project of Qingdao(Grant No.18-2-2-16-jcb).
文摘The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB3601300)the National Natural Science Foundation of China(Grant Nos.52201290,12074158,and 12174166)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2022-kb01)。
文摘Antiferromagnet(AFM)/ferromagnet(FM)heterostructure is a popular system for studying the spin–orbit torque(SOT)of AFMs.However,the interfacial exchange bias field induces that the magnetization in FM layer is noncollinear to the external magnetic field,namely the magnetic moment drag effect,which further influences the characteristic of SOT efficiency.In this work,we study the SOT efficiencies of IrMn/NiFe bilayers with strong interfacial exchange bias by using spin-torque ferromagnetic resonance(ST-FMR)method.A full analysis on the AFM/FM systems with exchange bias is performed,and the angular dependence of magnetization on external magnetic field is determined through the minimum rule of free energy.The ST-FMR results can be well fitted by this model.We obtained the relative accurate SOT efficiencyξ_(DL)=0.058 for the IrMn film.This work provides a useful method to analyze the angular dependence of ST-FMR results and facilitates the accurate measurement of SOT efficiency for the AFM/FM heterostructures with strong exchange bias.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074158,12174166,and 12104197)。
文摘We investigated the angle-dependent spin wave spectra of permalloy ring arrays with the fixed outer diameter and various inner diameters by ferromagnetic resonance spectroscopy and micromagnetic simulation.When the field is obliquely applied to the ring,local resonance mode can be observed in different parts of the rings.And the resonance mode will change to perpendicular spin standing waves if the magnetic field is applied along the perpendicular direction.The simulation results demonstrated this evolution and implied more resonance modes that maybe exist.And the mathematical fitting results based on the Kittel equation further proved the existence of local resonance mode.
文摘In this work, we investigated the influence of phosphorus and magnetic anneal on the soft magnetic properties of electrodeposited FeMnP alloy films prepared by changing sodium hypophosphite concentrations. X-ray diffraction radiation patterns showed an amorphous structure of electrodeposited alloy films. The saturation magnetization and coercivity value decreased from 586 emu/cc to 346 emu/cc, and 52 Oe to 18 Oe, with the P content increased, respectively. The absorption resonance peak became broad as the P content increased, and the natural resonance frequency decreased from 1.8 GHz to 0.6 GHz, with the P content increasing. Magnetic annealing of samples reduced the magnetic damping, and natural resonance frequency increased by about 1.8 GHz and 3.5 GHz for the sample with lower and higher P content. The film structure with lower P content changed at 300˚C, while the structure remains unchanged for the films with higher P content. Thus, the crystallization temperature could depend on the P content in the film. FeMnP alloy films could be used in high-frequency devices.