Perovskite solar cells(PSCs)based onα-phase FAPbI_(3)(α-FAPbI_(3))microcrystals precursor outperform those withδ-phase mi-crocrystals due to their superior crystallinity and fewer defects,makingα-phase microcrysta...Perovskite solar cells(PSCs)based onα-phase FAPbI_(3)(α-FAPbI_(3))microcrystals precursor outperform those withδ-phase mi-crocrystals due to their superior crystallinity and fewer defects,makingα-phase microcrystals precursor more advantageous for high-per-formance PSCs.However,most reported synthesis methods of perovskite microcrystals,especially for aqueous synthesis,fail to reach the energy threshold required forα-phase transformation and therefore exhibit theδphase.In this study,we introduce a novel aqueous syn-thesis method to fabricateα-FAPbI_(3) microcrystals.Our approach overcomes the energy barrier by properly heating the reaction system,enabling the direct formation ofα-FAPbI_(3) in water.This direct one-step aqueous synthesis route yieldsα-FAPbI_(3) microcrystals with su-perior phase purity,crystallinity,and minimal defect density.Combined with green anti-solvent,the high-qualityα-FAPbI_(3) microcrystals serving as exceptional precursors endow perovskite films with reduced nonradiative recombination.The PSC achieves a remarkable power conversion efficiency(PCE)of 24.43%,which is one of the highest PCE reports for using the green anti-solvent in ambient air condition.This aqueous synthesis approach shows a significant potential for scalable production of high-performance PSCs.展开更多
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro...In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.展开更多
To investigate the evolutionary behavior of the MnO–SiO_(2)–Al_(2)O_(3)–MgO inclusions during heat treatment,water quenched samples were isothermally held at 1100°C for 120 min in Ar and air atmosphere,and the...To investigate the evolutionary behavior of the MnO–SiO_(2)–Al_(2)O_(3)–MgO inclusions during heat treatment,water quenched samples were isothermally held at 1100°C for 120 min in Ar and air atmosphere,and the obtaining samples were analyzed by X-ray diffraction,scanning electron microscopy and energy dispersive spectrometer.It showed that 3MnO·Al_(2)O_(3)·3SiO_(2)and MnO·SiO_(2)were detected in the 5 wt.%MgO system after isothermal holding in Ar atmosphere,while MgO·Al_(2)O_(3),MnO·SiO_(2)and Mn7O8·SiO4 were detected in air atmosphere.The evolutionary behavior of the 10,15 and 20 wt.%MgO systems after isothermal holding in different atmosphere were consistent.Oxygen affected the solid phase transformation of the low MgO content systems.The calculation results of FactSage 8.1 showed that MgO·Al_(2)O_(3)was formed in the 5 wt.%MgO system with air atmosphere.The solid phase transformation was accompanied by grain coarsening during the isothermal holding process.The differences in the solid phase transformation in different atmosphere of the 5 wt.%MgO system indicated that it was a gas-phase transport grain coarsening mechanism.The enrichment of Al element in the liquid phase region at the grain edges,the homogeneous distribution of Mg element and the disappearance of the liquid phase within the crystal revealed that other MgO content systems were liquid–solid transport grain coarsening mechanism.展开更多
Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple...Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple atomization approach was successfully developed to promote the dispersion efficiency of graphene nanoplatelets(GNPs)in cement composites.This atomization approach can be integrated with the direct,indirect and combined ultrasonic stirrings in a homemade automatic stirring-atomization device.Mechanical and microstructure tests were performed on hardened cement pastes blended with GNPs in different stirring and mixing approaches.Results show that the direct ultrasonic stirrings enabled more homogeneous dispersions of GNP particles with a smaller size for a longer duration.The atomized droplets with the mean size of~100μm largely mitigated GNPs’agglomerations.Monolayer GNPs were observed in the cement matrix with the strength gain by up to 54%,and the total porosity decrease by 21%in 0.3 wt%GNPs dosage.The greatly enhanced dispersion efficiency of GNPs in cement also raised the cement hydration.This work provides an effective and manpower saving technique toward dispersing CNAs in engineering materials with great industrialization prospects.展开更多
Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed i...Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed in oxygen electrocatalysis because of the enhanced electron-transfer rate, high specific surface area, and superior mechanical flexibility. Among the self-supported conductive substrates, carbon fiber usually exhibits several distinctive advantages, such as a straightforward preparation process, relatively low cost, good stability, and excellent conductivity. Against this background,carbon fiber-based self-supported electrocatalysts have been widely applied and studied in oxygen electrocatalysis, indicating a promising development direction in oxygen electrocatalyst research.Thus, it is essential to offer an overall summary of the research progress in this field to facilitate its subsequent development. Taking the regulatory mechanisms and modification methods as a starting point, this review comprehensively summarizes recent research on carbon fiber-based self-supported electrocatalysts in recent years. Firstly, a brief overview of the synthesis methods and regulatory mechanisms of carbon fiber-based self-supported electrocatalysts is given. Furthermore, the view also highlights the modification methods and research progress of self-supported electrocatalysts synthesized on carbon fiber-based substrates in recent years in terms of different dopant atoms. Finally, the prospects for the application of self-supported electrocatalysts based on carbon fiber in oxygen electrocatalysis and the possible future directions of their development are presented. This review summarizes recent developments and applications of self-supported bi-functional electrocatalysts with carbon fiber-based materials as the conducting substrate in oxygen electrocatalysis. It also lays a robust scientific foundation for the subsequent reasonable design of highly effective carbon fiber-based self-supported electrocatalysts.展开更多
Taking three typical soft samples prepared respectively by loose packings of 77-,95-,and 109-μm copper grains as examples,we perform an experiment to investigate the energy-dependent laser-induced breakdown spectrosc...Taking three typical soft samples prepared respectively by loose packings of 77-,95-,and 109-μm copper grains as examples,we perform an experiment to investigate the energy-dependent laser-induced breakdown spectroscopy(LIBS)of soft materials.We discovered a reversal phenomenon in the trend of energy dependence of plasma emission intensity:increasing initially and then decreasing separated by a well-defined critical energy.The trend reversal is attributed to the laser-induced recoil pressure at the critical energy just matching the sample's yield strength.As a result,a one-to-one correspondence can be well established between the samples'yield stress and the critical energy that is easily obtainable from LIBS measurements.This allows us to propose an innovative method for estimating the yield stress of soft materials via LIBS with attractive advantages including in-situ remote detection,real-time data collection,and minimal destructive to sample.展开更多
Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piec...Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piecewise univariate model must be constructed to estimate grain size due to the complex dependence of the plasma formation environment on grain size.In the present work,we tentatively construct a unified calibration model suitable for LIBS-based estimation of those grain sizes.Specifically,two unified multivariate calibration models are constructed based on back-propagation neural network(BPNN)algorithms using feature selection strategies with and without considering prior information.By detailed analysis of the performances of the two multivariate models,it was found that a unified calibration model can be successfully constructed based on BPNN algorithms for estimating the grain size in the range of tens to hundreds of micrometers.It was also found that the model constructed with a priorguided feature selection strategy had better prediction performance.This study has practical significance in developing the technology for material analysis using LIBS,especially when the LIBS signal exhibits a complex dependence on the material parameter to be estimated.展开更多
A non-contact method for millimeter-scale inspection of material surface flatness via Laser-Induced Breakdown Spectroscopy(LIBS)is investigated experimentally.The experiment is performed using a planished surface of a...A non-contact method for millimeter-scale inspection of material surface flatness via Laser-Induced Breakdown Spectroscopy(LIBS)is investigated experimentally.The experiment is performed using a planished surface of an alloy steel sample to simulate its various flatness,ranging from 0 to 4.4 mm,by adjusting the laser focal plane to the surface distance with a step length of 0.2 mm.It is found that LIBS measurements are successful in inspecting the flatness differences among these simulated cases,implying that the method investigated here is feasible.It is also found that,for achieving the inspection of surface flatness within such a wide range,when univariate analysis is applied,a piecewise calibration model must be constructed.This is due to the complex dependence of plasma formation conditions on the surface flatness,which inevitably complicates the inspection procedure.To solve the problem,a multivariate analysis with the help of Back-Propagation Neural Network(BPNN)algorithms is applied to further construct the calibration model.By detailed analysis of the model performance,we demonstrate that a unified calibration model can be well established based on BPNN algorithms for unambiguous millimeter-scale range inspection of surface flatness with a resolution of about 0.2 mm.展开更多
Objective To examine the effects of exogenously administered intermedin (IMD,adrenomedullin-2) on arterial blood pressure,cardiac function and the cardiovascular IMD receptor system in spontaneously hypertensive ra...Objective To examine the effects of exogenously administered intermedin (IMD,adrenomedullin-2) on arterial blood pressure,cardiac function and the cardiovascular IMD receptor system in spontaneously hypertensive rats (SHRs) as well as to investigate the associated mechanisms.Methods Thirteen week-old male rats were divided in Wistar Kyoto (WKY) group (n =12),SHR group (n =12),IMD group (SHRs infused with IMD 1-47 500 ng/kg per hour,n =12),and ADM group (SHRs infused with adrenomedullin 500 ng/kg per hour,n =12).Results A two-week continuous administration of low dose IMD 1-47 via mini-osmotic pumps markedly reduced blood pressure,the maximal rates of increase and decrease of left-ventricle pressure development (LV ± dp/dtmax),left ventricular systolic pressure and heart rate in SHRs.Furthermore,IMD also inhibited protein over-expression of cardiovascular IMD receptors,myocardial Receptor Activity-Modifying Proteins (RAMP1 and RAMP2),aortic RAMP1,RAMP2,RAMP3,and calcitonin receptor-like receptor (CRLR);suppressed up-regulation of aortic RAMP1,RAMP2,RAMP3 and CRLR gene expression; and markedly elevated the mRNA abundance of myocardial atrial natriuretic peptide (ANP) and myocardial brain natriuretic peptide (BNP).Additionally,IMD 1-47 administration in SHRs increased aortic cAMP concentration and reduced myocardial cAMP concentration.Conclusion These findings support the speculation that IMD,as a cardiovascular active peptide,is involved in blood pressure reduction and cardiac function amelioration during hypertension.The mechanism underlying this effect may involve IMD binding of a receptor complex formed by RAMPs and CRLR,and consequential regulation of cAMP levels and other cardiovascular active factors,such as ANP and BNP.展开更多
As one of the three major components of woody biomass,lignin is a kind of natural organic polymer and the only abundant natural renewable resource with aromatic nucleus.Chemical catalysis induced depolymerization is a...As one of the three major components of woody biomass,lignin is a kind of natural organic polymer and the only abundant natural renewable resource with aromatic nucleus.Chemical catalysis induced depolymerization is an important and effective approach for lignin utilization.In particular,photocatalysis and electrocatalysis show great potential in accurately activating C-O/C-C bonds,which is a critical point of selective cleavage of lignin.In this contribution,we focus on radical and(photo)electron transfer induced reaction mechanisms of the photo(electro)catalytic depolymerization of lignin.Primarily,the general situation of Carbon-centered radicals and active oxygen species mediated lignin conversion has been discussed.Then the mechanisms for(photo)electron transfer mediated lignin depolymerization have been summarized.At the end of this review,the challenges and opportunities of photo(electro)catalysis in the applications of lignin valorization have been forecasted.展开更多
Tuning microstructures by adding nanoparticles is a promising way of improving the performance of cementitious composites.In this study,nanoclay was introduced to polyvinyl alcohol(PVA)fiber reinforced ultra high toug...Tuning microstructures by adding nanoparticles is a promising way of improving the performance of cementitious composites.In this study,nanoclay was introduced to polyvinyl alcohol(PVA)fiber reinforced ultra high toughness cementitious composites(UHTCCs).The mechanical properties,crack patterns,water permeation resistance,and microstructures of UHTCCs with different dosages of nanoclay were studied.The addition of a proper dosage of nanoclay shows few effects on the compressive strength of UHTCCs,however,the compressive strength is decreased when an excessive amount of nanoclay is added.The flexural deformation capacity of UHTCCs is independent of nanoclay dosage,whereas the flexural strength generally decreases with an increasing dosage of nanoclay.Different cracking patterns were observed in the ultra high toughness cementitious composites containing nanoclay(NC-UHTCC)specimens subject to bending tests.A UHTCC with 1%(in weight)nanoclay shows the best water permeation resistance and the lowest water permeability.Variations in the mechanical properties and the water permeation resistance of UHTCCs containing different dosages of nanoclay could be ascribed to the synthetic effects of filling and heterogeneous nucleation of nanoclay at low dosages and the agglomeration effect of nanoclay at high dosages.This study is to optimize the water permeation resistance of UHTCCs,paving a path for the future application of UHTCCs in the fields of construction,decoration,and repair.展开更多
Coal spontaneous combustion(CSC)is a disaster associated with coal mining that leads to loss of coal resources and envi-ronmental and human health issues.To investigate kinetic characteristics for oxidation of coal,th...Coal spontaneous combustion(CSC)is a disaster associated with coal mining that leads to loss of coal resources and envi-ronmental and human health issues.To investigate kinetic characteristics for oxidation of coal,three coal samples were collected from different coal mining areas in the Southern Junggar coalfield.Subsequently,the collected coal samples were ground into different particle sizes and tested using microscopic and macroscopic methods,including thermal gravimetric analysis,Fourier transform infrared spectroscopy,X-ray diffraction,and temperature-programmed oxidation.The results obtained are as follows:the sharpest absorption peak(002)indicates that graphitization is high.Furthermore,the results show that the SKS coal sample is prone to spontaneous combustion;the greater the aromatic hydrocarbon content is,the more difficult it is for CSC to occur,while the opposite is true for oxygen-containing functional groups.The SKS data confirmed this conclusion;the rate for generation of CO and CO_(2)controlled the possibility of SKS oxidation at 110℃and provided an indication of the temperature.During the dehydration stage,the WD sample had the lowest activation energy,indicating that it was most susceptible to spontaneous combustion.During the combustion stage,the lowest activation energy was found for the SKS sample with particle sizes<0.075 mm,indicating that particle size was one of the factors affecting spontane-ous combustion.The activation energy for dehydration was significantly lower than that for combustion,which showed that the coal oxygen reaction was more likely to occur in the dehydration stage.Based on DSC curves,the SKS sample had the largest exothermicity,indicating that it would ignite more readily.展开更多
size of spinel crystals in the CaO–SiO2–MgO –Al2O3–Cr2O3 system was investigated using lab experiments carried out in a carbon tube furnace. Scanning electron microscopy with energy-dispersive X-ray spectroscopy(...size of spinel crystals in the CaO–SiO2–MgO –Al2O3–Cr2O3 system was investigated using lab experiments carried out in a carbon tube furnace. Scanning electron microscopy with energy-dispersive X-ray spectroscopy(SEM–EDS) and X-ray diffraction(XRD) were used to analyze the microstructure, components, and the mineral phases of synthetic slags. FactS age 7.1 was used to calculate the crystallization process of the molten slag. The results showed that the addition of Fe2O3 promoted the precipitation of spinel crystals and inhibited the formation of dicalcium silicate. The size of spinel crystals increased from 2.74 to 8.10 μm and the contents of chromium and iron in the spinel varied as the Fe2O3 addition was increased from 0 to 20 wt%. Fe2O3 thermodynamically provided the spinel-forming components to enhance the formation of FeCr2O4, MgFe2O4, and Fe3O4. The addition of Fe2O3 increased the fraction of liquid phase in a certain temperature range and promoted diffusion by decreasing the slag’s viscosity. Therefore, Fe2O3 is beneficial to the growth of spinel crystals in stainless steel slag.展开更多
The train plan of urban rail transit under multi-routing mode can be divided into three parts: train formation, train operation periods and corresponding train counts of each routing in each period. Based on the anal...The train plan of urban rail transit under multi-routing mode can be divided into three parts: train formation, train operation periods and corresponding train counts of each routing in each period. Based on the analysis of passen- ger's general travel expenses and operator's benefits, the constraints and objective functions are defined and the multiobjective optimization model for the train plan of urban rail transit is presented. Factors considered in the multi- objective optimization model include transport capacity, the requirements of traffic organization, corporation benefits, passenger demands, and passenger choice behavior under multi-train-routing mode. According to the characteristics of this model and practical planning experience, a three-phase solution was designed to gradually optimize the train formarion, train counts as well as operation periods. The instance of Changsha Metro Line 2 validates the feasibility and efficiency of this approach.展开更多
Temperature variation and gas generation at diferent depths and positions in the coal combustion process were studied to determine the propagation and evolution of high temperature regions in the process of coal spont...Temperature variation and gas generation at diferent depths and positions in the coal combustion process were studied to determine the propagation and evolution of high temperature regions in the process of coal spontaneous combustion.This study selected coal samples from Mengcun,Shaanxi Province,People’s Republic of China,and developed a semi-enclosed experimental system(furnace)for simulating coal combustion.The thermal mass loss of coal samples under various heating rates(5,10,and 15℃/min)was analyzed through thermogravimetric analysis,and the dynamic characteristics of the coal samples were analyzed;the reliability of the semi-enclosed experimental system was verifed through the equal proportional method of fuzzy response.The results reveal that the high-temperature zone is distributed nonlinearly from the middle to the front end of the furnace,and the temperatures of points in this zone decreased gradually as the layer depth increased.The apparent activation energy of the coal samples during combustion frst increased and then decreased as the conversion degree increased.Furthermore,the proportion of mass loss and the mass loss rate in the coal samples observed in the thermogravimetric experiment is consistent with that observed in the frst and second stages of the experiment conducted using the semi-enclosed system.The research fndings can provide a theoretical basis for the prevention and control of hightemperature zones in coal combustion.展开更多
The elastic behavior of saturated porous materi- als under undrained freezing is investigated by using a poro- mechanical approach. Thermodynamic equilibria are used to describe the crystallization process of the part...The elastic behavior of saturated porous materi- als under undrained freezing is investigated by using a poro- mechanical approach. Thermodynamic equilibria are used to describe the crystallization process of the partially frozen solution in bulk state and confined state in pores. By phase transition at freezing, fusion energy, thermal contraction of solid, solution and ice crystals, volume changes of crystallization build up remarkable pore pressure that induces expansion or shrinkage of solid matrix. Owing to the lower chemical potential when pore water mixes with salts, fewer ice forms in pores. Penetration of ice into the porous materials increases the capillary pressure, but limits effect on the pore liquid pressure and the strain of solid matrix. On the contrary, the pore pressure induced by solution density rises as salt concentration increases and causes significant shrinkage of solid matrix.展开更多
We report an experimental investigation on the impact of the freezing rate on the cryo-deformation and cryo-damage of cementitious materials.Saturated,dried and air-entrained mortar specimens are subjected to laborato...We report an experimental investigation on the impact of the freezing rate on the cryo-deformation and cryo-damage of cementitious materials.Saturated,dried and air-entrained mortar specimens are subjected to laboratory freeze-thaw cycles under three freezing rates without moisture exchange with the environment.In addition to basic mechanical properties and pore distribution,the measurement is also effectuated for freezing expansion,residual deformation of the specimens in each cycle.From the results it is observed that a high freezing rate does augment the freezing expansion of material while the cryo-damage is more important for a low freezing rate.Accordingly,both the freezing rate and freezing duration should be taken into account for the cyro-damage extent of cementitious materials.展开更多
Lignocellulose shows significantly potential in sustainable conversion to high-quality fuel and valueadded chemicals with the demands for realizing the rapid cycle of carbon resources and helping to reach carbon neutr...Lignocellulose shows significantly potential in sustainable conversion to high-quality fuel and valueadded chemicals with the demands for realizing the rapid cycle of carbon resources and helping to reach carbon neutrality in nature.Selective tailoring of α-O-4,β-O-4,etc.linkages in lignin has always been viewed as "death blow" for its depolymerization.Herein,novel sodium lignosulfonate(SL) modified Fe_(3)O_(4)/TiO_(2)(SL-Fe_(3)O_(4)/TiO_(2)) spherical particles have been developed and used as catalysts for selectively photocatalytic oxidative cleavage of organosolv lignin.As expected,80% selective conversion of lignin in C2-C4 esters has been achieved,while C-O bonds in lignin model compounds can be effectively cleaved.Other than normal hydroxyl radical-mediated photocatalytic depolymerization of lignin over TiO_(2)-based materials,in this contribution,mechanism studies indicate that photogenerated holes and superoxide anion radicals are main active species,which trigger the cleavage of α/β-O-4 bond,and the isotopelabeling study confirms the crucial factor of C_β-H dehydrogenation in cleavage of β-O-4 bonds.展开更多
It is cellular immunotherapy for the tumor that the in vitro modified immunocytes from patients or donors are reinfused into patients to kill tumor cells.Chimeric antigen receptor T cell(CAR-T)therapy,one of the most ...It is cellular immunotherapy for the tumor that the in vitro modified immunocytes from patients or donors are reinfused into patients to kill tumor cells.Chimeric antigen receptor T cell(CAR-T)therapy,one of the most successful and representative tumor cellular immunotherapies,is now the weapon for cancer after extensive research.Although CAR-T immunotherapy achieves success in treating relapsed/refractory hematological tumors,its drawbacks,including the poor effect in solid tumors,cytokine release syndrome(CRS)or CAR-T-related encephalopathy syndrome(CRES),on-target,off-tumor effect,and high cost,cannot be overlooked.Nanotechnology is advantageous in the construction of CARs,the transfection of T cells,the expansion,delivery,and antitumor effect of CAR-T cells,and the reduction of CAR-T therapy-associated toxicities.Currently,introducing nanotechnology into CAR-T immunotherapy has already been performed in numerous studies with highly promising results.In this review,we summarized the nanotechnologies used in CAR-T immunotherapy and discussed the challenges and directions of CAR-T immunotherapy combined with nanotechnologies in the future.展开更多
In this study, the effects of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt on soil microbial communities and disease resist- ance of tobacco were investigated by field experiment. T...In this study, the effects of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt on soil microbial communities and disease resist- ance of tobacco were investigated by field experiment. The results showed that the incidence of tobacco bacterial wilt in bio-organic fertilizer treatments (T3 and T4) decreased remarkably among four treatments in the field. Compared with the local conventional fertilization group, the incidence of tobacco bacterial wilt was re- duced by 21.9% and 25.0% in T3 and T4, respectively ; the yield of flue-cured tobacco was improved by 5.7% and 5.3%, respectively ; the proportion of mid- high grade tobacco leaves increased by 2.3% and 2.6%, respectively. After application of bio-organie fertilizer with antagonistic bacteria against tobacco bacterial wilt, rhizosphere soil microbial communities exhibited vast amount and abundant species ; the amount of rhizosphere soil bacteria of infected tobacco plants was im- proved by 218.5% with fewer species. It could be concluded that the application of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt could improve the ecological environment of tobacco field, inhibit the growth of pathogenic bacteria, decrease the incidence of tobacco bacterial wilt, and enhance the quality of flue-cured tobacco. This study laid the foundation for further ecological prevention and control of soil-borne diseases of tobacco.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3803300)the Major Scientific and Technological Project in 2022 of Changsha,China(No.kq2301002).
文摘Perovskite solar cells(PSCs)based onα-phase FAPbI_(3)(α-FAPbI_(3))microcrystals precursor outperform those withδ-phase mi-crocrystals due to their superior crystallinity and fewer defects,makingα-phase microcrystals precursor more advantageous for high-per-formance PSCs.However,most reported synthesis methods of perovskite microcrystals,especially for aqueous synthesis,fail to reach the energy threshold required forα-phase transformation and therefore exhibit theδphase.In this study,we introduce a novel aqueous syn-thesis method to fabricateα-FAPbI_(3) microcrystals.Our approach overcomes the energy barrier by properly heating the reaction system,enabling the direct formation ofα-FAPbI_(3) in water.This direct one-step aqueous synthesis route yieldsα-FAPbI_(3) microcrystals with su-perior phase purity,crystallinity,and minimal defect density.Combined with green anti-solvent,the high-qualityα-FAPbI_(3) microcrystals serving as exceptional precursors endow perovskite films with reduced nonradiative recombination.The PSC achieves a remarkable power conversion efficiency(PCE)of 24.43%,which is one of the highest PCE reports for using the green anti-solvent in ambient air condition.This aqueous synthesis approach shows a significant potential for scalable production of high-performance PSCs.
基金The authors gratefully acknowledge the financial support of the Natural Science Foundation of China,China(Grant No.21975082 and 21736003)the Guangdong Basic and Applied Basic Research Foundation(Grant Number:2019A1515011472 and 2022A1515011341)the Science and Technology Program of Guangzhou(Grant Number:202102080479).
文摘In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.
基金supported by the National Natural Science Foundation of China(Nos.52274341 and 51974210).
文摘To investigate the evolutionary behavior of the MnO–SiO_(2)–Al_(2)O_(3)–MgO inclusions during heat treatment,water quenched samples were isothermally held at 1100°C for 120 min in Ar and air atmosphere,and the obtaining samples were analyzed by X-ray diffraction,scanning electron microscopy and energy dispersive spectrometer.It showed that 3MnO·Al_(2)O_(3)·3SiO_(2)and MnO·SiO_(2)were detected in the 5 wt.%MgO system after isothermal holding in Ar atmosphere,while MgO·Al_(2)O_(3),MnO·SiO_(2)and Mn7O8·SiO4 were detected in air atmosphere.The evolutionary behavior of the 10,15 and 20 wt.%MgO systems after isothermal holding in different atmosphere were consistent.Oxygen affected the solid phase transformation of the low MgO content systems.The calculation results of FactSage 8.1 showed that MgO·Al_(2)O_(3)was formed in the 5 wt.%MgO system with air atmosphere.The solid phase transformation was accompanied by grain coarsening during the isothermal holding process.The differences in the solid phase transformation in different atmosphere of the 5 wt.%MgO system indicated that it was a gas-phase transport grain coarsening mechanism.The enrichment of Al element in the liquid phase region at the grain edges,the homogeneous distribution of Mg element and the disappearance of the liquid phase within the crystal revealed that other MgO content systems were liquid–solid transport grain coarsening mechanism.
基金supported by the Fundamental Research Funds for the Central Universities(No.226-2023-00010)National Natural Science Foundation of China(No.52038004)ZJU-ZCCC Institute of Collaborative Innovation(No.ZDJG2021008).
文摘Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple atomization approach was successfully developed to promote the dispersion efficiency of graphene nanoplatelets(GNPs)in cement composites.This atomization approach can be integrated with the direct,indirect and combined ultrasonic stirrings in a homemade automatic stirring-atomization device.Mechanical and microstructure tests were performed on hardened cement pastes blended with GNPs in different stirring and mixing approaches.Results show that the direct ultrasonic stirrings enabled more homogeneous dispersions of GNP particles with a smaller size for a longer duration.The atomized droplets with the mean size of~100μm largely mitigated GNPs’agglomerations.Monolayer GNPs were observed in the cement matrix with the strength gain by up to 54%,and the total porosity decrease by 21%in 0.3 wt%GNPs dosage.The greatly enhanced dispersion efficiency of GNPs in cement also raised the cement hydration.This work provides an effective and manpower saving technique toward dispersing CNAs in engineering materials with great industrialization prospects.
基金Tianjin Natural Science Foundation (23JCYBJC00660)Tianjin Enterprise Science and Technology Commissioner Project (23YDTPJC00490)+2 种基金National Natural Science Foundation of China (52203066, 51973157, 61904123)China Postdoctoral Science Foundation Grant (2023M742135)State Key Laboratory of Membrane and Membrane Separation, Tiangong University。
文摘Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed in oxygen electrocatalysis because of the enhanced electron-transfer rate, high specific surface area, and superior mechanical flexibility. Among the self-supported conductive substrates, carbon fiber usually exhibits several distinctive advantages, such as a straightforward preparation process, relatively low cost, good stability, and excellent conductivity. Against this background,carbon fiber-based self-supported electrocatalysts have been widely applied and studied in oxygen electrocatalysis, indicating a promising development direction in oxygen electrocatalyst research.Thus, it is essential to offer an overall summary of the research progress in this field to facilitate its subsequent development. Taking the regulatory mechanisms and modification methods as a starting point, this review comprehensively summarizes recent research on carbon fiber-based self-supported electrocatalysts in recent years. Firstly, a brief overview of the synthesis methods and regulatory mechanisms of carbon fiber-based self-supported electrocatalysts is given. Furthermore, the view also highlights the modification methods and research progress of self-supported electrocatalysts synthesized on carbon fiber-based substrates in recent years in terms of different dopant atoms. Finally, the prospects for the application of self-supported electrocatalysts based on carbon fiber in oxygen electrocatalysis and the possible future directions of their development are presented. This review summarizes recent developments and applications of self-supported bi-functional electrocatalysts with carbon fiber-based materials as the conducting substrate in oxygen electrocatalysis. It also lays a robust scientific foundation for the subsequent reasonable design of highly effective carbon fiber-based self-supported electrocatalysts.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402300)the National Natural Science Foundation of China(Grant Nos.U2241288 and 11974359).
文摘Taking three typical soft samples prepared respectively by loose packings of 77-,95-,and 109-μm copper grains as examples,we perform an experiment to investigate the energy-dependent laser-induced breakdown spectroscopy(LIBS)of soft materials.We discovered a reversal phenomenon in the trend of energy dependence of plasma emission intensity:increasing initially and then decreasing separated by a well-defined critical energy.The trend reversal is attributed to the laser-induced recoil pressure at the critical energy just matching the sample's yield strength.As a result,a one-to-one correspondence can be well established between the samples'yield stress and the critical energy that is easily obtainable from LIBS measurements.This allows us to propose an innovative method for estimating the yield stress of soft materials via LIBS with attractive advantages including in-situ remote detection,real-time data collection,and minimal destructive to sample.
基金supported in part by the National Key Research and Development Program of China(No.2017YFA0402300)National Natural Science Foundation of China(Nos.U2241288 and 11974359)Major Science and Technology Project of Gansu Province(No.22ZD6FA021-5)。
文摘Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piecewise univariate model must be constructed to estimate grain size due to the complex dependence of the plasma formation environment on grain size.In the present work,we tentatively construct a unified calibration model suitable for LIBS-based estimation of those grain sizes.Specifically,two unified multivariate calibration models are constructed based on back-propagation neural network(BPNN)algorithms using feature selection strategies with and without considering prior information.By detailed analysis of the performances of the two multivariate models,it was found that a unified calibration model can be successfully constructed based on BPNN algorithms for estimating the grain size in the range of tens to hundreds of micrometers.It was also found that the model constructed with a priorguided feature selection strategy had better prediction performance.This study has practical significance in developing the technology for material analysis using LIBS,especially when the LIBS signal exhibits a complex dependence on the material parameter to be estimated.
基金supported in part by the National Key Research and Development Program of China(No.2022YFA1602500)National Natural Science Foundation of China program(No.U2241288).
文摘A non-contact method for millimeter-scale inspection of material surface flatness via Laser-Induced Breakdown Spectroscopy(LIBS)is investigated experimentally.The experiment is performed using a planished surface of an alloy steel sample to simulate its various flatness,ranging from 0 to 4.4 mm,by adjusting the laser focal plane to the surface distance with a step length of 0.2 mm.It is found that LIBS measurements are successful in inspecting the flatness differences among these simulated cases,implying that the method investigated here is feasible.It is also found that,for achieving the inspection of surface flatness within such a wide range,when univariate analysis is applied,a piecewise calibration model must be constructed.This is due to the complex dependence of plasma formation conditions on the surface flatness,which inevitably complicates the inspection procedure.To solve the problem,a multivariate analysis with the help of Back-Propagation Neural Network(BPNN)algorithms is applied to further construct the calibration model.By detailed analysis of the model performance,we demonstrate that a unified calibration model can be well established based on BPNN algorithms for unambiguous millimeter-scale range inspection of surface flatness with a resolution of about 0.2 mm.
文摘Objective To examine the effects of exogenously administered intermedin (IMD,adrenomedullin-2) on arterial blood pressure,cardiac function and the cardiovascular IMD receptor system in spontaneously hypertensive rats (SHRs) as well as to investigate the associated mechanisms.Methods Thirteen week-old male rats were divided in Wistar Kyoto (WKY) group (n =12),SHR group (n =12),IMD group (SHRs infused with IMD 1-47 500 ng/kg per hour,n =12),and ADM group (SHRs infused with adrenomedullin 500 ng/kg per hour,n =12).Results A two-week continuous administration of low dose IMD 1-47 via mini-osmotic pumps markedly reduced blood pressure,the maximal rates of increase and decrease of left-ventricle pressure development (LV ± dp/dtmax),left ventricular systolic pressure and heart rate in SHRs.Furthermore,IMD also inhibited protein over-expression of cardiovascular IMD receptors,myocardial Receptor Activity-Modifying Proteins (RAMP1 and RAMP2),aortic RAMP1,RAMP2,RAMP3,and calcitonin receptor-like receptor (CRLR);suppressed up-regulation of aortic RAMP1,RAMP2,RAMP3 and CRLR gene expression; and markedly elevated the mRNA abundance of myocardial atrial natriuretic peptide (ANP) and myocardial brain natriuretic peptide (BNP).Additionally,IMD 1-47 administration in SHRs increased aortic cAMP concentration and reduced myocardial cAMP concentration.Conclusion These findings support the speculation that IMD,as a cardiovascular active peptide,is involved in blood pressure reduction and cardiac function amelioration during hypertension.The mechanism underlying this effect may involve IMD binding of a receptor complex formed by RAMPs and CRLR,and consequential regulation of cAMP levels and other cardiovascular active factors,such as ANP and BNP.
基金financial support of the National Natural Science Foundation of China,China(Grant No.21736003,21975082)the Guangdong Basic and Applied Basic Research Foundation(Grant Number:2019A1515011472)the Science and Technology Program of Guangzhou(Grant Number:202102080479)。
文摘As one of the three major components of woody biomass,lignin is a kind of natural organic polymer and the only abundant natural renewable resource with aromatic nucleus.Chemical catalysis induced depolymerization is an important and effective approach for lignin utilization.In particular,photocatalysis and electrocatalysis show great potential in accurately activating C-O/C-C bonds,which is a critical point of selective cleavage of lignin.In this contribution,we focus on radical and(photo)electron transfer induced reaction mechanisms of the photo(electro)catalytic depolymerization of lignin.Primarily,the general situation of Carbon-centered radicals and active oxygen species mediated lignin conversion has been discussed.Then the mechanisms for(photo)electron transfer mediated lignin depolymerization have been summarized.At the end of this review,the challenges and opportunities of photo(electro)catalysis in the applications of lignin valorization have been forecasted.
基金Project supported by the National Natural Science Foundation of China(No.51978624)the Zhejiang Provincial Natural Science Foundation of China(No.LY19E080030)+3 种基金the Production and Construction Group’s Programs for Science and Technology Development(No.2019AB016)the Zhejiang Cultural Relics Protection Science and Technology Project(No.2014009)the 2017 Hangzhou Transportation Society Scientific Research Project(No.14)the First-class Disciplines Project of Civil Engineering in Zhejiang Province,China。
文摘Tuning microstructures by adding nanoparticles is a promising way of improving the performance of cementitious composites.In this study,nanoclay was introduced to polyvinyl alcohol(PVA)fiber reinforced ultra high toughness cementitious composites(UHTCCs).The mechanical properties,crack patterns,water permeation resistance,and microstructures of UHTCCs with different dosages of nanoclay were studied.The addition of a proper dosage of nanoclay shows few effects on the compressive strength of UHTCCs,however,the compressive strength is decreased when an excessive amount of nanoclay is added.The flexural deformation capacity of UHTCCs is independent of nanoclay dosage,whereas the flexural strength generally decreases with an increasing dosage of nanoclay.Different cracking patterns were observed in the ultra high toughness cementitious composites containing nanoclay(NC-UHTCC)specimens subject to bending tests.A UHTCC with 1%(in weight)nanoclay shows the best water permeation resistance and the lowest water permeability.Variations in the mechanical properties and the water permeation resistance of UHTCCs containing different dosages of nanoclay could be ascribed to the synthetic effects of filling and heterogeneous nucleation of nanoclay at low dosages and the agglomeration effect of nanoclay at high dosages.This study is to optimize the water permeation resistance of UHTCCs,paving a path for the future application of UHTCCs in the fields of construction,decoration,and repair.
基金supported by the National Natural Science Foundation of China(51974275)the Tianshan Innovation Team of Xinjiang Province(2021D14018)the Natural Science Program of Xinjiang Province Department of Education(XJEDU20181007).
文摘Coal spontaneous combustion(CSC)is a disaster associated with coal mining that leads to loss of coal resources and envi-ronmental and human health issues.To investigate kinetic characteristics for oxidation of coal,three coal samples were collected from different coal mining areas in the Southern Junggar coalfield.Subsequently,the collected coal samples were ground into different particle sizes and tested using microscopic and macroscopic methods,including thermal gravimetric analysis,Fourier transform infrared spectroscopy,X-ray diffraction,and temperature-programmed oxidation.The results obtained are as follows:the sharpest absorption peak(002)indicates that graphitization is high.Furthermore,the results show that the SKS coal sample is prone to spontaneous combustion;the greater the aromatic hydrocarbon content is,the more difficult it is for CSC to occur,while the opposite is true for oxygen-containing functional groups.The SKS data confirmed this conclusion;the rate for generation of CO and CO_(2)controlled the possibility of SKS oxidation at 110℃and provided an indication of the temperature.During the dehydration stage,the WD sample had the lowest activation energy,indicating that it was most susceptible to spontaneous combustion.During the combustion stage,the lowest activation energy was found for the SKS sample with particle sizes<0.075 mm,indicating that particle size was one of the factors affecting spontane-ous combustion.The activation energy for dehydration was significantly lower than that for combustion,which showed that the coal oxygen reaction was more likely to occur in the dehydration stage.Based on DSC curves,the SKS sample had the largest exothermicity,indicating that it would ignite more readily.
基金financially supported by the National Natural Science Foundation of China (No. 51404173)Hubei Provincial Natural Science Foundation (No. 2016CFB579)+1 种基金China Postdoctoral Science Foundation (No. 2014M562073)State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology
文摘size of spinel crystals in the CaO–SiO2–MgO –Al2O3–Cr2O3 system was investigated using lab experiments carried out in a carbon tube furnace. Scanning electron microscopy with energy-dispersive X-ray spectroscopy(SEM–EDS) and X-ray diffraction(XRD) were used to analyze the microstructure, components, and the mineral phases of synthetic slags. FactS age 7.1 was used to calculate the crystallization process of the molten slag. The results showed that the addition of Fe2O3 promoted the precipitation of spinel crystals and inhibited the formation of dicalcium silicate. The size of spinel crystals increased from 2.74 to 8.10 μm and the contents of chromium and iron in the spinel varied as the Fe2O3 addition was increased from 0 to 20 wt%. Fe2O3 thermodynamically provided the spinel-forming components to enhance the formation of FeCr2O4, MgFe2O4, and Fe3O4. The addition of Fe2O3 increased the fraction of liquid phase in a certain temperature range and promoted diffusion by decreasing the slag’s viscosity. Therefore, Fe2O3 is beneficial to the growth of spinel crystals in stainless steel slag.
基金supported by the National Natural Science Foundation of China (No. 70901076)Research Fund for the Doctoral Program of Higher Education of China (No. 20090162120021)Natural Science Foundation of Hunan Province (No. 10JJ4046)
文摘The train plan of urban rail transit under multi-routing mode can be divided into three parts: train formation, train operation periods and corresponding train counts of each routing in each period. Based on the analysis of passen- ger's general travel expenses and operator's benefits, the constraints and objective functions are defined and the multiobjective optimization model for the train plan of urban rail transit is presented. Factors considered in the multi- objective optimization model include transport capacity, the requirements of traffic organization, corporation benefits, passenger demands, and passenger choice behavior under multi-train-routing mode. According to the characteristics of this model and practical planning experience, a three-phase solution was designed to gradually optimize the train formarion, train counts as well as operation periods. The instance of Changsha Metro Line 2 validates the feasibility and efficiency of this approach.
基金Financial support for this study was kindly provided by the National Natural Science Foundation Project of China(No.51804246,No.52174202)Natural Science Foundation of Xinjiang Province(No.2019D01C057)the Youth Talent Promotion Program of Shaanxi University Association for Science and Technology(No.20200425).
文摘Temperature variation and gas generation at diferent depths and positions in the coal combustion process were studied to determine the propagation and evolution of high temperature regions in the process of coal spontaneous combustion.This study selected coal samples from Mengcun,Shaanxi Province,People’s Republic of China,and developed a semi-enclosed experimental system(furnace)for simulating coal combustion.The thermal mass loss of coal samples under various heating rates(5,10,and 15℃/min)was analyzed through thermogravimetric analysis,and the dynamic characteristics of the coal samples were analyzed;the reliability of the semi-enclosed experimental system was verifed through the equal proportional method of fuzzy response.The results reveal that the high-temperature zone is distributed nonlinearly from the middle to the front end of the furnace,and the temperatures of points in this zone decreased gradually as the layer depth increased.The apparent activation energy of the coal samples during combustion frst increased and then decreased as the conversion degree increased.Furthermore,the proportion of mass loss and the mass loss rate in the coal samples observed in the thermogravimetric experiment is consistent with that observed in the frst and second stages of the experiment conducted using the semi-enclosed system.The research fndings can provide a theoretical basis for the prevention and control of hightemperature zones in coal combustion.
基金supported by the National Basic Research Program of China(2009CB623106)the National Science Foundation for Post-doctoral Scientists of China(2012M520288)
文摘The elastic behavior of saturated porous materi- als under undrained freezing is investigated by using a poro- mechanical approach. Thermodynamic equilibria are used to describe the crystallization process of the partially frozen solution in bulk state and confined state in pores. By phase transition at freezing, fusion energy, thermal contraction of solid, solution and ice crystals, volume changes of crystallization build up remarkable pore pressure that induces expansion or shrinkage of solid matrix. Owing to the lower chemical potential when pore water mixes with salts, fewer ice forms in pores. Penetration of ice into the porous materials increases the capillary pressure, but limits effect on the pore liquid pressure and the strain of solid matrix. On the contrary, the pore pressure induced by solution density rises as salt concentration increases and causes significant shrinkage of solid matrix.
基金supported by the National Natural Science Foundation of China(No. 50538060)the Fundamental Research Grant of Tsinghua University(No.JCqn2005004),China
文摘We report an experimental investigation on the impact of the freezing rate on the cryo-deformation and cryo-damage of cementitious materials.Saturated,dried and air-entrained mortar specimens are subjected to laboratory freeze-thaw cycles under three freezing rates without moisture exchange with the environment.In addition to basic mechanical properties and pore distribution,the measurement is also effectuated for freezing expansion,residual deformation of the specimens in each cycle.From the results it is observed that a high freezing rate does augment the freezing expansion of material while the cryo-damage is more important for a low freezing rate.Accordingly,both the freezing rate and freezing duration should be taken into account for the cyro-damage extent of cementitious materials.
基金the financial support of the Natural Science Foundation of China (21736003, 22178130 and 22005106)the Natural Science Foundation of Guangdong Province, China (2020A0505100008)the Science and Technology Program of Guangzhou (202206010024)。
文摘Lignocellulose shows significantly potential in sustainable conversion to high-quality fuel and valueadded chemicals with the demands for realizing the rapid cycle of carbon resources and helping to reach carbon neutrality in nature.Selective tailoring of α-O-4,β-O-4,etc.linkages in lignin has always been viewed as "death blow" for its depolymerization.Herein,novel sodium lignosulfonate(SL) modified Fe_(3)O_(4)/TiO_(2)(SL-Fe_(3)O_(4)/TiO_(2)) spherical particles have been developed and used as catalysts for selectively photocatalytic oxidative cleavage of organosolv lignin.As expected,80% selective conversion of lignin in C2-C4 esters has been achieved,while C-O bonds in lignin model compounds can be effectively cleaved.Other than normal hydroxyl radical-mediated photocatalytic depolymerization of lignin over TiO_(2)-based materials,in this contribution,mechanism studies indicate that photogenerated holes and superoxide anion radicals are main active species,which trigger the cleavage of α/β-O-4 bond,and the isotopelabeling study confirms the crucial factor of C_β-H dehydrogenation in cleavage of β-O-4 bonds.
基金supported by the National Natural Science Foundation of China(Nos.31930067,31771096,31700868,31700869,and 31525009)China Postdoctoral Science Foundation(Nos.2018M633367 and 2018T110977)+1 种基金Post-Doc Research Project,West China Hospital,Sichuan University(No.2020HXBH165)1·3·5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(No.ZYGD18002)。
文摘It is cellular immunotherapy for the tumor that the in vitro modified immunocytes from patients or donors are reinfused into patients to kill tumor cells.Chimeric antigen receptor T cell(CAR-T)therapy,one of the most successful and representative tumor cellular immunotherapies,is now the weapon for cancer after extensive research.Although CAR-T immunotherapy achieves success in treating relapsed/refractory hematological tumors,its drawbacks,including the poor effect in solid tumors,cytokine release syndrome(CRS)or CAR-T-related encephalopathy syndrome(CRES),on-target,off-tumor effect,and high cost,cannot be overlooked.Nanotechnology is advantageous in the construction of CARs,the transfection of T cells,the expansion,delivery,and antitumor effect of CAR-T cells,and the reduction of CAR-T therapy-associated toxicities.Currently,introducing nanotechnology into CAR-T immunotherapy has already been performed in numerous studies with highly promising results.In this review,we summarized the nanotechnologies used in CAR-T immunotherapy and discussed the challenges and directions of CAR-T immunotherapy combined with nanotechnologies in the future.
基金Supported by Project of Nanping Tobacco Monopoly Bureau(NYK2012-14-3)
文摘In this study, the effects of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt on soil microbial communities and disease resist- ance of tobacco were investigated by field experiment. The results showed that the incidence of tobacco bacterial wilt in bio-organic fertilizer treatments (T3 and T4) decreased remarkably among four treatments in the field. Compared with the local conventional fertilization group, the incidence of tobacco bacterial wilt was re- duced by 21.9% and 25.0% in T3 and T4, respectively ; the yield of flue-cured tobacco was improved by 5.7% and 5.3%, respectively ; the proportion of mid- high grade tobacco leaves increased by 2.3% and 2.6%, respectively. After application of bio-organie fertilizer with antagonistic bacteria against tobacco bacterial wilt, rhizosphere soil microbial communities exhibited vast amount and abundant species ; the amount of rhizosphere soil bacteria of infected tobacco plants was im- proved by 218.5% with fewer species. It could be concluded that the application of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt could improve the ecological environment of tobacco field, inhibit the growth of pathogenic bacteria, decrease the incidence of tobacco bacterial wilt, and enhance the quality of flue-cured tobacco. This study laid the foundation for further ecological prevention and control of soil-borne diseases of tobacco.