Asymmetric tilt boundaries on conventional twin boundaries(TBs)are significant for understanding the role of twins on coordinating plastic deformation in many metallic alloys.However,the formation modes of many asymme...Asymmetric tilt boundaries on conventional twin boundaries(TBs)are significant for understanding the role of twins on coordinating plastic deformation in many metallic alloys.However,the formation modes of many asymmetric tilt boundaries are hard to be accounted for based on traditional theoretical models,and the corresponding solute segregation is complex.Herein,atomic structures of a specific asymmetric boundary on{1012}TBs were reveled using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),molecular dynamics(MD)and density functional theory(DFT)simulations.Reaction between<a60>M dislocations and the{1012}TB can generate a~61°/25°asymmetric tilt boundary.The segregation of Gd and Zn atoms is closely related to the aggregateddislocations and the interfacial interstices of the asymmetric tilt boundary,which is energetically favorable in reducing the total system energy.展开更多
In petroleum,mercaptan impurities generate malodorous fumes that pose risks to both human health and the environment,and leading to substandard oil quality.Lye desulfurization is a widely employed technique for elimin...In petroleum,mercaptan impurities generate malodorous fumes that pose risks to both human health and the environment,and leading to substandard oil quality.Lye desulfurization is a widely employed technique for eliminating mercaptans from oil.In traditional scrubber towers,lye and oil are poorly mixed,the desulfurization efficiency is low,and the lye consumption is high.To enhance washing efficiency,a droplet micromixer and corresponding fiber coalescence separator were developed.By optimizing the structure and operating parameters,more effective mixing and separation were achieved,and both caustic washing and desulfurization were enhanced.The proposed mixer/separator outperforms the industry standard by reducing the caustic loading by 30%and offers superior economic and engineering performances.The results of this study offer a direction for designing and optimizing a mercaptan removal unit to enhance the scrubbing effectiveness and decrease expenses to achieve more efficient and green production process.展开更多
The tradeoff between strength and corrosion resistance restricts the development of low-alloyed magnesium(Mg)alloys.In this work,a low-alloyed Mg-1Sm-0.8Mn-0.5Ca-0.4Zn alloy was prepared through a simple process of co...The tradeoff between strength and corrosion resistance restricts the development of low-alloyed magnesium(Mg)alloys.In this work,a low-alloyed Mg-1Sm-0.8Mn-0.5Ca-0.4Zn alloy was prepared through a simple process of conventional casting followed by proper hotextrusion.The as-extruded alloy exhibits a very high yield strength of 402 MPa,an acceptable elongation of 5%,and a low corrosion rate of 0.56 mm y^(-1) which is close to that of high-purity Mg,and such comprehensive properties are superior to most reported Mg alloys,whether high alloying or low alloying.The special fine microstructure is responsible for high strength,including fine dynamic recrystallized(DRXed)grains,strong textured un-DRXed grains,dislocations and uniformly dispersed nano-spaced α-Mn nano-precipitates.An important finding of this study is that the corrosion film microstructure has amorphous characteristics,and this inevitably contributes to the high film protectiveness,and finally improves the corrosion resistance of the as-extruded alloy with relatively strong micro-galvanic corrosion tendency.In addition,the influence of micro/submicron-sized Mg_(2)Ca with anodic nature and nano-sized cathode α-Mn precipitates with strong strengthening effect on the corrosion film is also discussed.This study suggests that the strength-corrosion tradeoff can be evaded by regulating the microstructure of alloy substrate and corrosion film in the low-alloyed Mg alloy.展开更多
The surrogate model serves as an efficient simulation tool during the slope parameter inversion process.However,the creep constitutive model integrated with dynamic damage evolution poses challenges in development of ...The surrogate model serves as an efficient simulation tool during the slope parameter inversion process.However,the creep constitutive model integrated with dynamic damage evolution poses challenges in development of the required surrogate model.In this study,a novel physics knowledge-based surrogate model framework is proposed.In this framework,a Transformer module is employed to capture straindriven softening-hardening physical mechanisms.Positional encoding and self-attention are utilized to transform the constitutive parameters associated with shear strain,which are not directly time-related,into intermediate latent features for physical loss calculation.Next,a multi-layer stacked GRU(gated recurrent unit)network is built to provide input interfaces for time-dependent intermediate latent features,hydraulic boundary conditions,and water-rock interaction degradation equations,with static parameters introduced via external fully-connected layers.Finally,a combined loss function is constructed to facilitate the collaborative training of physical and data loss,introducing time-dependent weight adjustments to focus the surrogate model on accurate deformation predictions during critical phases.Based on the deformation of a reservoir bank landslide triggered by impoundment and subsequent restabilization,an elasto-viscoplastic constitutive model that considers water effect and sliding state dependencies is developed to validate the proposed surrogate model framework.The results indicate that the framework exhibits good performance in capturing physical mechanisms and predicting creep behavior,reducing errors by about 30 times compared to baseline models such as GRU and LSTM(long short-term memory),meeting the precision requirements for parameter inversion.Ablation experiments also confirmed the effectiveness of the framework.This framework can also serve as a reference for constructing other creep surrogate models that involve non-time-related across dimensions.展开更多
As an evaluation index,the natural frequency has the advantages of easy acquisition and quantitative evaluation.In this paper,the natural frequency is used to evaluate the performance of external cable reinforced brid...As an evaluation index,the natural frequency has the advantages of easy acquisition and quantitative evaluation.In this paper,the natural frequency is used to evaluate the performance of external cable reinforced bridges.Numerical examples show that compared with the natural frequencies of first-order modes,the natural frequencies of higher-order modes are more sensitive and can reflect the damage situation and external cable reinforcement effect of T-beam bridges.For damaged bridges,as the damage to the T-beam increases,the natural frequency value of the bridge gradually decreases.When the degree of local damage to the beam reaches 60%,the amplitude of natural frequency change exceeds 10%for the first time.The natural frequencies of the firstorder vibration mode and higher-order vibration mode can be selected as indexes for different degrees of the damaged T-beam bridges.For damaged bridges reinforced with external cables,the traditional natural frequency of the first-order vibration mode cannot be used as the index,which is insensitive to changes in prestress of the external cable.Some natural frequencies of higher-order vibration modes can be selected as indexes,which can reflect the reinforcement effect of externally prestressed damaged T-beam bridges,and its numerical value increases with the increase of external prestressed cable force.展开更多
Electric desalting wastewater(EDW)is one of the petrochemical wastewater generated in the production process of petrochemical industry,due to the instability of its water quality,the traditional wastewater treatment t...Electric desalting wastewater(EDW)is one of the petrochemical wastewater generated in the production process of petrochemical industry,due to the instability of its water quality,the traditional wastewater treatment technology is complex,high energy consumption,and will produce waste causing secondary pollution,posing challenges in terms of environmental protection,technology,and economy.This study utilized an on-site test to investigate the possibility of a new short-process physical method to replace traditional electro-chemical,oil-separation,and two-stage air floating physical chemistry processes,in response to optimizing the treatment effect,thus reducing the cost of treatment and carbon emissions.Following this test,this new short-flow physical method process could improve the efficiency of oil and suspend solid(SS)removal by 15.48%and 58.72%,and providing 78.37%and 75.55%the operating costs and carbon emissions savings,respectively.This system also reduced the production of waste solids,volatile organic compounds,and other three-waste compared with the traditional process.These benefits offer environmental and economic advantages,and this process serves as an efficient strategy to treat wastewater for electric desalination,and can be served as a completely new technological and process option for the treatment of EDW.展开更多
We propose and investigate a novel stable two-dimensional(2D)AlO_(2)with anomalous stoichiometric ratios based on first-principles calculation.2D AlO_(2)has metallic properties.It possesses the rare in-plane and out-o...We propose and investigate a novel stable two-dimensional(2D)AlO_(2)with anomalous stoichiometric ratios based on first-principles calculation.2D AlO_(2)has metallic properties.It possesses the rare in-plane and out-of-plane negative Poisson's ratio(NPR)phenomenon,originating from its special sawtooth-like structure.The absolute value of the NPR decreases as the number of layers increases.The adsorption of volatile organic compounds(VOCs)including CH_(2)O,C_(2)H_(3)Cl and C_(6)H_(6)by AlO_(2)exhibit small adsorption distance,large adsorption energy,large charge transfer and significant density of states(DOS)changes,indicating the presence of strong interactions.The desorption time of each gas molecule on the AlO_(2)surface is also evaluated,and the results further suggest that the desorption of VOCs can be controlled by changing the temperature to achieve the recycling of AlO_(2).These interesting properties make 2D AlO_(2)a promising material for electronic,mechanical and sensing applications for VOCs.展开更多
The 2D/3D heterojunction perovskites have garnered increasing attention due to their exceptional moisture and thermal stability.However,few works have paid attention to the influence of the subsequent change process o...The 2D/3D heterojunction perovskites have garnered increasing attention due to their exceptional moisture and thermal stability.However,few works have paid attention to the influence of the subsequent change process of 2D/3D heterojunction PSC on the stability of PSCs.Moreover,the evolution of the interface and carrier dynamic behavior of the 2D/3D perovskite films with long-term operation has not been systematically developed befo re.In this work,the effects of 2D/3 D heterojunction evolution on the interface of perovskite films and different carrier dynamics during 2D/3D evolution are systematically analyzed for the first time.The decomposition of 2D/3D heterojunction in the perovskite film will have a certain impact on the surface and carrier dynamics behavior of perovskite.During the evolution of 2D/3D heterojunction,PbI_(2)crystals will appear,which will improve the interfacial energy level matching between the electron transport layer and perovskite film.With a long evolution time,some holes will appear on the surface of perovskite film.The open circuit voltage(V_(OC))of PSCs increased from 1.14 to1.18 V and the PCE increased to 23.21%after 300 h storage in the nitrogen atmosphere,and maintained 89%initial performance for with 3000 h stability test in N_(2)box.This discovery has a significant role in promoting the development of inverted heterojunction PSCs and constructing the revolution mechanism of charge carrier dynamic.展开更多
Objectives:The aim of this study was to verify the causal relationship between trait aggressiveness(TA)and moral disengagement(MD),know more about the growth trajectory of MD,and explore the effects of gender and TA o...Objectives:The aim of this study was to verify the causal relationship between trait aggressiveness(TA)and moral disengagement(MD),know more about the growth trajectory of MD,and explore the effects of gender and TA on the growth trajectory.Methods:We used the Buss-Perry Aggression Questionnaire and Moral Disengagement Scale to survey 433 Chinese junior high school students longitudinally three times.Results:The results of the random intercept cross-lagged panel model(RI-CLPM)analysis indicated that TA positively predicted MD,while MD did not predict TA at the within-person level.Thus,TA could be considered an antecedent variable of MD.Furthermore,the unconditional latent growth linear model analysis revealed that MD among junior high school students exhibited an upward trend,characterized by an increasing rate of growth over time.In the conditional latent growth linear model analysis,we found that gender influenced only the initial level of MD but had no effect on its growth rate.Conversely,TA demonstrated both delayed and immediate positive effects on the growth of MD.Conclusions:Our findings suggested a one-way cross-lag effect between TA and MD.Additionally,the growth trajectory of MD among junior high school students was found to be ascending.This growth trajectory was influenced by gender and TA,offering valuable insights for the prevention and intervention of behavioral problems in junior high school students.展开更多
Surface recrystallization(RX) is a typical grain defect observed in directionally solidified(DS) Ni-based superalloys. Most studies have focused on the RX behavior and its impact on the mechanical properties of single...Surface recrystallization(RX) is a typical grain defect observed in directionally solidified(DS) Ni-based superalloys. Most studies have focused on the RX behavior and its impact on the mechanical properties of single-crystal(SC) superalloys, with limited research on its influence on the high-temperature mechanical properties of DS superalloys. This study systematically investigated the effect of RX on the high-temperature tensile properties of a DS DZ409 superalloy. The results show that at 650℃, the yield strength decreases almost linearly with an increase in RX fraction. A significant reduction in elongation is observed as the RX fraction increases from 0% to 4.9%. However, beyond this point, further increase in RX fraction leads to minimal changes in elongation. At 950℃, both yield strength and elongation decrease as the RX fraction increases from 0% to 4.9%. At 650℃, fractures in the RX DS superalloys exhibit a mixed mode of transgranular and intergranular cleavage fracture, while at 950℃, it features a combination of ductile and intergranular dimple fractures. The failure mechanism of the RX DS superalloy is associated with the introduction of transverse grain boundaries(GBs) during RX. In the early stages of tensile testing at intermediate and high temperatures, cracks can easily initiate at these GBs. Subsequently, the cracks propagate along the GBs into the DS matrix, ultimately leading to failure of the DS superalloy.展开更多
The development of highly active functionalized ionic liquids(ILs)as both extractants and catalysts for use in achieving deep desulfurization continues to pose challenges.In this study,a highly efficient oxidative des...The development of highly active functionalized ionic liquids(ILs)as both extractants and catalysts for use in achieving deep desulfurization continues to pose challenges.In this study,a highly efficient oxidative desulfurization system was constructed,composed of dual-acidic ionic liquids(DILs)and H_(2)O_(2)-AcOH.The investigation results of four DILs prepared from different metal chlorides([HSO_(3)C_(3)NEt_(3)]Cl-MnCl_(n),MnCl_(n)=AlCl_(3),ZnCl_(2),CuCl_(2),FeCl_(3))in oxidative desulfurization showed that[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3)had an outstanding catalytic effect and significantly promoted the oxidation of sulfides.With a 0.2 g[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3),the removal rate of dibenzothiophene(DBT)reached 100%in 10 mL model oil under mild conditions at 55℃for 20 min.The key is its ability to induce the dismutation of su-peroxide anions(·O_(2)^(-)),which facilitates the generation of singlet oxygen(1 O_(2)).The efficient oxidation of DBT is accomplished through a predominantly^(1)O_(2)-mediated_(n)on-radical mechanism.[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3)serves as a favorable medium for contact to be made between^(1)O_(2)and sulfides,which indicates an efficient catalytic-adsorption synergy.展开更多
Intervertebral disc degeneration is a degenerative disease where inflammation and immune responses play significant roles.Macrophages,as key immune cells,critically regulate inflammation through polarization into diff...Intervertebral disc degeneration is a degenerative disease where inflammation and immune responses play significant roles.Macrophages,as key immune cells,critically regulate inflammation through polarization into different phenotypes.In recent years,the role of macrophages in inflammation-related degenerative diseases,such as intervertebral disc degeneration,has been increasingly recognized.Macrophages construct the inflammatory microenvironment of the intervertebral disc and are involved in regulating intervertebral disc cell activities,extracellular matrix metabolism,intervertebral disc vascularization,and innervation,profoundly influencing the progression of disc degeneration.To gain a deeper understanding of the inflammatory microenvironment of intervertebral disc degeneration,this review will summarize the role of macrophages in the pathological process of intervertebral disc degeneration,analyze the regulatory mechanisms involving macrophages,and review therapeutic strategies targeting macrophage modulation for the treatment of intervertebral disc degeneration.These insights will be valuable for the treatment and research directions of intervertebral disc degeneration.展开更多
To date,several molecules have been found to facilitate iron influx,while the types of iron influx channels remain to be elucidated.Here,Piezo1 channel was identified as a key iron transporter in response to mechanica...To date,several molecules have been found to facilitate iron influx,while the types of iron influx channels remain to be elucidated.Here,Piezo1 channel was identified as a key iron transporter in response to mechanical stress.Piezo1-mediated iron overload disturbed iron metabolism and exaggerated ferroptosis in nucleus pulposus cells(NPCs).Importantly,Piezo1-induced iron influx was independent of the transferrin receptor(TFRC),a well-recognized iron gatekeeper.Furthermore,pharmacological inactivation of Piezo1 profoundly reduced iron accumulation,alleviated mitochondrial ROS,and suppressed ferroptotic alterations in stimulation of mechanical stress.Moreover,conditional knockout of Piezo1(Col2a1-CreERT Piezo1^(flox/flox))attenuated the mechanical injury-induced intervertebral disc degeneration(IVDD).Notably,the protective effect of Piezo1 deficiency in IVDD was dampened in Piezo1/Gpx4 conditional double knockout(cDKO)mice(Col2a1-CreERT Piezo1^(flox/flox)/Gpx4^(flox/flox)).These findings suggest that Piezo1 is a potential determinant of iron influx,indicating that the Piezo1-iron-ferroptosis axis might shed light on the treatment of mechanical stress-induced diseases.展开更多
Thermal stable intermetallic particles are important for the heat resistance of magnesium(Mg)alloys.In this work,many lath-like particles formed in α-Mg grains of a Mg-8Gd-3Sm-0.7Al casting alloy when heat-treated at...Thermal stable intermetallic particles are important for the heat resistance of magnesium(Mg)alloys.In this work,many lath-like particles formed in α-Mg grains of a Mg-8Gd-3Sm-0.7Al casting alloy when heat-treated at 873 K.Atomic-resolution high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM) characterizations indicate that most of them are Mg-containing Al_(2)(Gd,Sm),with the atomic ratio of Mg:Al:(Gd,Sm) being ~1:1:1;a small part of them with relatively wider thickness are long-period stacking ordered(LPSO) phases simultaneously containing both 14H and 18R structures.Both followed common orientation relationships with Mg matrix as those reported in previous work.In addition,many Mg laths were observed in the primary blocky Al_(2)(Gd,Sm) phase at grain boundaries,where the atomic ratio of Al:(Gd,Sm) in the Al_(2)(Gd,Sm) matrix was 2:1.Finally,density functional theory(DFT) calculations illustrated the detail structure of the re-constructed Mg/Al_(2)RE interface and simultaneously deduced the underlying reason for the re-dissolution of the newly formed Mg-containing Al_(2)(Gd,Sm) plates in α-Mg matrix.展开更多
Hydrogen,meeting the requirements of sustainable development,is regarded as the ultimate energy in the 21st century.Due to the inexhaustible and feasible of solar energy,solar water splitting is an immensely promising...Hydrogen,meeting the requirements of sustainable development,is regarded as the ultimate energy in the 21st century.Due to the inexhaustible and feasible of solar energy,solar water splitting is an immensely promising strategy for environmental-friendly hydrogen production,which not only overcomes the fluctuation and intermittency but also contributes to achieving the mission of global“Carbon Neutrality and Carbon Peaking”.However,there is still a lack of a comprehensive overview focusing on hydrogen progress with a discussion of development from solar energy to solar cells.Herein,we emphasize several solar-to-hydrogen pathways from the basic concepts and principles and focus on photovoltaic-electrolysis and photoelectrochemical/photovoltaic systems,which have achieved solar-to-hydrogen(STH)efficiency of over 10%and have extremely promising for large-scale application.In addition,we summarize the challenges and opportunities faced in this field including configuration design,electrode materials,and performance evaluation.Finally,perspectives on the potential commercial application and scientific research for the further development of solar-to-hydrogen are analyzed and presented.展开更多
Relationship between precipitation strengthening and creep resistance improvement has been an impor-tant topic for the widespread applications of magnesium alloys.Generally,static precipitation strength-ening through ...Relationship between precipitation strengthening and creep resistance improvement has been an impor-tant topic for the widespread applications of magnesium alloys.Generally,static precipitation strength-ening through thermal stable precipitates would generate satisfactory creep resistance.However,an op-posite example is presented in this work and we propose that the size of precipitates plays a crucial role in controlling the operative creep mechanisms.In addition,the precipitate components along with their crystal structures in the crept Mg-4Al-3Sm-0.4Mn samples with/without pre-aging were thor-oughly studied using Cs aberration-corrected high-angle annular dark-field scanning transmission elec-tron microscopy(HAADF-STEM).Previous aging generates a large density of fine precipitates(<~5 nm)homogeneously distributing in Mg matrix and exhibiting satisfactory strengthening effect.However,the number density of precipitate strings consisting of several or even dozens of relatively coarse precipitates(~10 nm)was significantly decreased at the same time.As revealed in this work,the relatively coarse particles in Mg matrix are much more efficient than the fine precipitates in promoting dislocation climb.Therefore,the rate-controlling mechanisms are transferred from dislocation climb to dislocation slip after previous aging,thus leading to degradation of creep resistance.Moreover,there are mainly five types of precipitates/clusters,namelyβ"-(Al,Mg)3Sm,Al5Sm3,ordered Al-Sm cluster,ordered Al-Mn cluster and ordered/unordered AlMnSm clusters.The crystal structures of the former two precipitates were discussed and the formation mechanisms of the precipitates/clusters were revealed.展开更多
Mg-Al-Zn-Mn(AZ)system alloys have become widely used due to their good castability,excellent formability and outstanding corrosion resistance[1-6].However,their strength is still much lower than that of traditional Mg...Mg-Al-Zn-Mn(AZ)system alloys have become widely used due to their good castability,excellent formability and outstanding corrosion resistance[1-6].However,their strength is still much lower than that of traditional Mg-RE(rare earth)based alloys or even some new Mg-Li basedalloys[7-19].展开更多
This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting tr...This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting traditional basal texture,it owns an exceptional CYS/TYS as high as~1.17.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)examinations indicate pyramidal and prismatic dislocations plus tensile twinning being activated after immediate yielding in compression while basal and non-basal dislocations in tension.I-phase particles transferred the concentrated stress by self-twinning to provide the driving force for tensile twin initiating in neighboring grains,thereby significantly increasing the critical resolved shear stress of tensile twinning to possibly the level of pyramidal slip,finally leading to the dominance of pyramidal slip plus tensile twinning in texture grains.This results in a higher contribution on yield strength by~55 MPa in compression than in tension,which reasonably agrees with the experimental yield strength difference(~38 MPa).It can be concluded that I-phase particles influence deformation modes in tension and in compression,finally result in reversed yield strength asymmetry.展开更多
A high-pressure die casting(HPDC)Mg-5Gd-1.5Sm-0.7Al alloy was newly developed and exhibits outstanding strength-ductility synergy,with the yield strength and the tensile elongation to fracture being approximately 200 ...A high-pressure die casting(HPDC)Mg-5Gd-1.5Sm-0.7Al alloy was newly developed and exhibits outstanding strength-ductility synergy,with the yield strength and the tensile elongation to fracture being approximately 200 MPa and 8.5%,respectively.This alloy has two types of a-Mg grains:coarse a_(1)-Mg((46±18)μm)and fine a_(2)-Mg((9.2±2.3)μm)grains,and various Al-GS(GS=Gd and Sm)particles located at grain boundaries while clear solute-atom segregation near grain boundaries with limited or free intermetallic particles.Characterizations using Cs-corrected high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)indicate the crystal structures of Al-GS phases.After aging,denseβ'precipitates and chain-shapedβ''-like structures precipitated near grain boundaries while a high density of ultrafineβ''-(Mg,Al)3Sm precipitates and Al-GS clusters formed in grain center.Relatively fine grains,Al-GS primary particles,solute-atom segregation near grain boundaries,and/or multiple precipitates contribute to the high strength of the studied alloy,while the multi-scale a-Mg grains,variety of intermetallic particles but discontinuous skeleton,and the multi-typed precipitated lead to its satisfactory ductility.展开更多
基金supported by the Scientific and Technological Developing Scheme of Jilin Province under grants no.YDZJ202301ZYTS538the Chinese Academy of Sciences Youth Innovation Promotion Association under grants number 2023234+3 种基金the National Natural Science Foundation of China under grants number U21A20323the Scientific and Technological Developing Scheme of Jilin Province under grants no.SKL202302038the Major Scientific and Technological Projects of Hebei Province under grants No.23291001Zthe Scientific and Technology Project of Hanjiang District.
文摘Asymmetric tilt boundaries on conventional twin boundaries(TBs)are significant for understanding the role of twins on coordinating plastic deformation in many metallic alloys.However,the formation modes of many asymmetric tilt boundaries are hard to be accounted for based on traditional theoretical models,and the corresponding solute segregation is complex.Herein,atomic structures of a specific asymmetric boundary on{1012}TBs were reveled using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),molecular dynamics(MD)and density functional theory(DFT)simulations.Reaction between<a60>M dislocations and the{1012}TB can generate a~61°/25°asymmetric tilt boundary.The segregation of Gd and Zn atoms is closely related to the aggregateddislocations and the interfacial interstices of the asymmetric tilt boundary,which is energetically favorable in reducing the total system energy.
基金supported by the National Natural Science Foundation of China(52025103)the Xplorer Prize(XPLORER-2022-1034).
文摘In petroleum,mercaptan impurities generate malodorous fumes that pose risks to both human health and the environment,and leading to substandard oil quality.Lye desulfurization is a widely employed technique for eliminating mercaptans from oil.In traditional scrubber towers,lye and oil are poorly mixed,the desulfurization efficiency is low,and the lye consumption is high.To enhance washing efficiency,a droplet micromixer and corresponding fiber coalescence separator were developed.By optimizing the structure and operating parameters,more effective mixing and separation were achieved,and both caustic washing and desulfurization were enhanced.The proposed mixer/separator outperforms the industry standard by reducing the caustic loading by 30%and offers superior economic and engineering performances.The results of this study offer a direction for designing and optimizing a mercaptan removal unit to enhance the scrubbing effectiveness and decrease expenses to achieve more efficient and green production process.
基金the support of the National Natural Science Foundation of China(52471126,52071093)the Natural Science Foundation of Heilongjiang Province of China(LH2023E059)the Scientific and Technological Developing Scheme of Jilin Province(SKL202302038).
文摘The tradeoff between strength and corrosion resistance restricts the development of low-alloyed magnesium(Mg)alloys.In this work,a low-alloyed Mg-1Sm-0.8Mn-0.5Ca-0.4Zn alloy was prepared through a simple process of conventional casting followed by proper hotextrusion.The as-extruded alloy exhibits a very high yield strength of 402 MPa,an acceptable elongation of 5%,and a low corrosion rate of 0.56 mm y^(-1) which is close to that of high-purity Mg,and such comprehensive properties are superior to most reported Mg alloys,whether high alloying or low alloying.The special fine microstructure is responsible for high strength,including fine dynamic recrystallized(DRXed)grains,strong textured un-DRXed grains,dislocations and uniformly dispersed nano-spaced α-Mn nano-precipitates.An important finding of this study is that the corrosion film microstructure has amorphous characteristics,and this inevitably contributes to the high film protectiveness,and finally improves the corrosion resistance of the as-extruded alloy with relatively strong micro-galvanic corrosion tendency.In addition,the influence of micro/submicron-sized Mg_(2)Ca with anodic nature and nano-sized cathode α-Mn precipitates with strong strengthening effect on the corrosion film is also discussed.This study suggests that the strength-corrosion tradeoff can be evaded by regulating the microstructure of alloy substrate and corrosion film in the low-alloyed Mg alloy.
基金supported by the National Natural Science Foundation of China(Grant No.41961134032).
文摘The surrogate model serves as an efficient simulation tool during the slope parameter inversion process.However,the creep constitutive model integrated with dynamic damage evolution poses challenges in development of the required surrogate model.In this study,a novel physics knowledge-based surrogate model framework is proposed.In this framework,a Transformer module is employed to capture straindriven softening-hardening physical mechanisms.Positional encoding and self-attention are utilized to transform the constitutive parameters associated with shear strain,which are not directly time-related,into intermediate latent features for physical loss calculation.Next,a multi-layer stacked GRU(gated recurrent unit)network is built to provide input interfaces for time-dependent intermediate latent features,hydraulic boundary conditions,and water-rock interaction degradation equations,with static parameters introduced via external fully-connected layers.Finally,a combined loss function is constructed to facilitate the collaborative training of physical and data loss,introducing time-dependent weight adjustments to focus the surrogate model on accurate deformation predictions during critical phases.Based on the deformation of a reservoir bank landslide triggered by impoundment and subsequent restabilization,an elasto-viscoplastic constitutive model that considers water effect and sliding state dependencies is developed to validate the proposed surrogate model framework.The results indicate that the framework exhibits good performance in capturing physical mechanisms and predicting creep behavior,reducing errors by about 30 times compared to baseline models such as GRU and LSTM(long short-term memory),meeting the precision requirements for parameter inversion.Ablation experiments also confirmed the effectiveness of the framework.This framework can also serve as a reference for constructing other creep surrogate models that involve non-time-related across dimensions.
基金supported by Henan Province Science and Technology Research Funding Project(No.222102320129)the Key Research Project of Henan Higher Education Institutions(Grant Nos.22A560004,22A56005).
文摘As an evaluation index,the natural frequency has the advantages of easy acquisition and quantitative evaluation.In this paper,the natural frequency is used to evaluate the performance of external cable reinforced bridges.Numerical examples show that compared with the natural frequencies of first-order modes,the natural frequencies of higher-order modes are more sensitive and can reflect the damage situation and external cable reinforcement effect of T-beam bridges.For damaged bridges,as the damage to the T-beam increases,the natural frequency value of the bridge gradually decreases.When the degree of local damage to the beam reaches 60%,the amplitude of natural frequency change exceeds 10%for the first time.The natural frequencies of the firstorder vibration mode and higher-order vibration mode can be selected as indexes for different degrees of the damaged T-beam bridges.For damaged bridges reinforced with external cables,the traditional natural frequency of the first-order vibration mode cannot be used as the index,which is insensitive to changes in prestress of the external cable.Some natural frequencies of higher-order vibration modes can be selected as indexes,which can reflect the reinforcement effect of externally prestressed damaged T-beam bridges,and its numerical value increases with the increase of external prestressed cable force.
基金supported by the National Natural Science Foundation of China(Nos.52300086 and 52025103)the Postdoctoral Fellowship Program of CPSF(No.GZB20230215).
文摘Electric desalting wastewater(EDW)is one of the petrochemical wastewater generated in the production process of petrochemical industry,due to the instability of its water quality,the traditional wastewater treatment technology is complex,high energy consumption,and will produce waste causing secondary pollution,posing challenges in terms of environmental protection,technology,and economy.This study utilized an on-site test to investigate the possibility of a new short-process physical method to replace traditional electro-chemical,oil-separation,and two-stage air floating physical chemistry processes,in response to optimizing the treatment effect,thus reducing the cost of treatment and carbon emissions.Following this test,this new short-flow physical method process could improve the efficiency of oil and suspend solid(SS)removal by 15.48%and 58.72%,and providing 78.37%and 75.55%the operating costs and carbon emissions savings,respectively.This system also reduced the production of waste solids,volatile organic compounds,and other three-waste compared with the traditional process.These benefits offer environmental and economic advantages,and this process serves as an efficient strategy to treat wastewater for electric desalination,and can be served as a completely new technological and process option for the treatment of EDW.
基金financially supported by National Natural Science Foundation of China(No.22275149)Fundamental Research Funds for the Central Universities(No.SWU118105)the Next-Generation Advanced Energy Materials Program of BatteroTech Co.,Ltd.
文摘We propose and investigate a novel stable two-dimensional(2D)AlO_(2)with anomalous stoichiometric ratios based on first-principles calculation.2D AlO_(2)has metallic properties.It possesses the rare in-plane and out-of-plane negative Poisson's ratio(NPR)phenomenon,originating from its special sawtooth-like structure.The absolute value of the NPR decreases as the number of layers increases.The adsorption of volatile organic compounds(VOCs)including CH_(2)O,C_(2)H_(3)Cl and C_(6)H_(6)by AlO_(2)exhibit small adsorption distance,large adsorption energy,large charge transfer and significant density of states(DOS)changes,indicating the presence of strong interactions.The desorption time of each gas molecule on the AlO_(2)surface is also evaluated,and the results further suggest that the desorption of VOCs can be controlled by changing the temperature to achieve the recycling of AlO_(2).These interesting properties make 2D AlO_(2)a promising material for electronic,mechanical and sensing applications for VOCs.
基金financial support provided by the Sichuan Science and Technology Program(No.2022NSFSC0226)Sichuan Science and Technology Program(No.2023ZYD0163)+6 种基金the Production-Education Integration Demonstration Project of Sichuan Provincethe Photovoltaic Industry Production-Education Integration Comprehensive Demonstration Base of Sichuan Province(Sichuan Financial Education[2022]No.106)China Tianfu Yongxing Laboratory Science and Technology Key Project(2023KJGG15)National Key Research and Development Program of China(2022YFB3803300)Beijing Natural Science Foundation(IS23037)the Department for Energy Security and Net Zero(project ID:NEXTCCUS)the ACT program(Accelerating CCS Technologies,Horizon2020 project NO.691712)。
文摘The 2D/3D heterojunction perovskites have garnered increasing attention due to their exceptional moisture and thermal stability.However,few works have paid attention to the influence of the subsequent change process of 2D/3D heterojunction PSC on the stability of PSCs.Moreover,the evolution of the interface and carrier dynamic behavior of the 2D/3D perovskite films with long-term operation has not been systematically developed befo re.In this work,the effects of 2D/3 D heterojunction evolution on the interface of perovskite films and different carrier dynamics during 2D/3D evolution are systematically analyzed for the first time.The decomposition of 2D/3D heterojunction in the perovskite film will have a certain impact on the surface and carrier dynamics behavior of perovskite.During the evolution of 2D/3D heterojunction,PbI_(2)crystals will appear,which will improve the interfacial energy level matching between the electron transport layer and perovskite film.With a long evolution time,some holes will appear on the surface of perovskite film.The open circuit voltage(V_(OC))of PSCs increased from 1.14 to1.18 V and the PCE increased to 23.21%after 300 h storage in the nitrogen atmosphere,and maintained 89%initial performance for with 3000 h stability test in N_(2)box.This discovery has a significant role in promoting the development of inverted heterojunction PSCs and constructing the revolution mechanism of charge carrier dynamic.
基金supported by the National Natural Science Foundation of China(72164018)Humanities and Social Sciences Research Planning Foundation of the Ministry of Education(22YJA190012)+1 种基金Jiangxi Universities Key Research Base Project of Humanities and Social Sciences(JD23071)Jiangxi Provincial Colleges and Universities Ideological and Political Education Research Association Project(XSGZ24239).
文摘Objectives:The aim of this study was to verify the causal relationship between trait aggressiveness(TA)and moral disengagement(MD),know more about the growth trajectory of MD,and explore the effects of gender and TA on the growth trajectory.Methods:We used the Buss-Perry Aggression Questionnaire and Moral Disengagement Scale to survey 433 Chinese junior high school students longitudinally three times.Results:The results of the random intercept cross-lagged panel model(RI-CLPM)analysis indicated that TA positively predicted MD,while MD did not predict TA at the within-person level.Thus,TA could be considered an antecedent variable of MD.Furthermore,the unconditional latent growth linear model analysis revealed that MD among junior high school students exhibited an upward trend,characterized by an increasing rate of growth over time.In the conditional latent growth linear model analysis,we found that gender influenced only the initial level of MD but had no effect on its growth rate.Conversely,TA demonstrated both delayed and immediate positive effects on the growth of MD.Conclusions:Our findings suggested a one-way cross-lag effect between TA and MD.Additionally,the growth trajectory of MD among junior high school students was found to be ascending.This growth trajectory was influenced by gender and TA,offering valuable insights for the prevention and intervention of behavioral problems in junior high school students.
基金supported by the National Science and Technology Major Project(No.HT-J2019-VI-0020-0136)the National Youth Talent Support Program,and the Fundamental Research Funds for the Central Universities(No.xtr072024004).
文摘Surface recrystallization(RX) is a typical grain defect observed in directionally solidified(DS) Ni-based superalloys. Most studies have focused on the RX behavior and its impact on the mechanical properties of single-crystal(SC) superalloys, with limited research on its influence on the high-temperature mechanical properties of DS superalloys. This study systematically investigated the effect of RX on the high-temperature tensile properties of a DS DZ409 superalloy. The results show that at 650℃, the yield strength decreases almost linearly with an increase in RX fraction. A significant reduction in elongation is observed as the RX fraction increases from 0% to 4.9%. However, beyond this point, further increase in RX fraction leads to minimal changes in elongation. At 950℃, both yield strength and elongation decrease as the RX fraction increases from 0% to 4.9%. At 650℃, fractures in the RX DS superalloys exhibit a mixed mode of transgranular and intergranular cleavage fracture, while at 950℃, it features a combination of ductile and intergranular dimple fractures. The failure mechanism of the RX DS superalloy is associated with the introduction of transverse grain boundaries(GBs) during RX. In the early stages of tensile testing at intermediate and high temperatures, cracks can easily initiate at these GBs. Subsequently, the cracks propagate along the GBs into the DS matrix, ultimately leading to failure of the DS superalloy.
基金support provided by South Africa National Research Foundation(UID 95983,113648,137947)Foundation for Innovative Research Groups of the Natural Science Foundation of Hebei Province(no.B2021208005).
文摘The development of highly active functionalized ionic liquids(ILs)as both extractants and catalysts for use in achieving deep desulfurization continues to pose challenges.In this study,a highly efficient oxidative desulfurization system was constructed,composed of dual-acidic ionic liquids(DILs)and H_(2)O_(2)-AcOH.The investigation results of four DILs prepared from different metal chlorides([HSO_(3)C_(3)NEt_(3)]Cl-MnCl_(n),MnCl_(n)=AlCl_(3),ZnCl_(2),CuCl_(2),FeCl_(3))in oxidative desulfurization showed that[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3)had an outstanding catalytic effect and significantly promoted the oxidation of sulfides.With a 0.2 g[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3),the removal rate of dibenzothiophene(DBT)reached 100%in 10 mL model oil under mild conditions at 55℃for 20 min.The key is its ability to induce the dismutation of su-peroxide anions(·O_(2)^(-)),which facilitates the generation of singlet oxygen(1 O_(2)).The efficient oxidation of DBT is accomplished through a predominantly^(1)O_(2)-mediated_(n)on-radical mechanism.[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3)serves as a favorable medium for contact to be made between^(1)O_(2)and sulfides,which indicates an efficient catalytic-adsorption synergy.
基金National Natural Science Foundation of China(U24A20670,82372419,82072435)Tianjin Science and Technology Plan Project“Unveiling and Directing”Major Project(21ZXJBSY00130)Beijing-Tianjin-Hebei Basic Research Cooperation Project(J230020)。
文摘Intervertebral disc degeneration is a degenerative disease where inflammation and immune responses play significant roles.Macrophages,as key immune cells,critically regulate inflammation through polarization into different phenotypes.In recent years,the role of macrophages in inflammation-related degenerative diseases,such as intervertebral disc degeneration,has been increasingly recognized.Macrophages construct the inflammatory microenvironment of the intervertebral disc and are involved in regulating intervertebral disc cell activities,extracellular matrix metabolism,intervertebral disc vascularization,and innervation,profoundly influencing the progression of disc degeneration.To gain a deeper understanding of the inflammatory microenvironment of intervertebral disc degeneration,this review will summarize the role of macrophages in the pathological process of intervertebral disc degeneration,analyze the regulatory mechanisms involving macrophages,and review therapeutic strategies targeting macrophage modulation for the treatment of intervertebral disc degeneration.These insights will be valuable for the treatment and research directions of intervertebral disc degeneration.
基金supported in part by the National Nature Science Foundation(81874022 and 82172483 to Xinyu Liu,82102522 to Lianlei Wang,82072478 to Yunpeng Zhao,82072435 to Qiang Yang,82073437 to Weiwei Li,81930070 to Shiqing Feng,82272548 to Lei Cheng)Key R&D Project of Shandong Province(2022CXGC010503 to Xinyu Liu)+1 种基金Shandong Natural Science Foundation(ZR202102210113 to Lianlei Wang,ZR2020YQ54 to Yunpeng Zhao)Shandong Province Taishan Scholar Project(tsqn202211317 to Lianlei Wang).The authors thank the Translational Medicine Core Facility of Shandong University for the consultation and instrument availability that supported this work.
文摘To date,several molecules have been found to facilitate iron influx,while the types of iron influx channels remain to be elucidated.Here,Piezo1 channel was identified as a key iron transporter in response to mechanical stress.Piezo1-mediated iron overload disturbed iron metabolism and exaggerated ferroptosis in nucleus pulposus cells(NPCs).Importantly,Piezo1-induced iron influx was independent of the transferrin receptor(TFRC),a well-recognized iron gatekeeper.Furthermore,pharmacological inactivation of Piezo1 profoundly reduced iron accumulation,alleviated mitochondrial ROS,and suppressed ferroptotic alterations in stimulation of mechanical stress.Moreover,conditional knockout of Piezo1(Col2a1-CreERT Piezo1^(flox/flox))attenuated the mechanical injury-induced intervertebral disc degeneration(IVDD).Notably,the protective effect of Piezo1 deficiency in IVDD was dampened in Piezo1/Gpx4 conditional double knockout(cDKO)mice(Col2a1-CreERT Piezo1^(flox/flox)/Gpx4^(flox/flox)).These findings suggest that Piezo1 is a potential determinant of iron influx,indicating that the Piezo1-iron-ferroptosis axis might shed light on the treatment of mechanical stress-induced diseases.
基金financially supported by the Scientific and Technological Developing Scheme of Jilin Province(Nos.YDZJ202301ZYTS538 and 20220101239JC)the Chinese Academy of Sciences Youth Innovation Promotion Association (No.2023234)+3 种基金the National Natural Science Foundation of China (No.U21A20323)the Scientific and Technological Developing Scheme of Jilin Province (No.SKL202302038)the Major Scientific and Technological Projects of Hebei Province (No.23291001Z)the Scientific and Technology Project of Hanjiang District。
文摘Thermal stable intermetallic particles are important for the heat resistance of magnesium(Mg)alloys.In this work,many lath-like particles formed in α-Mg grains of a Mg-8Gd-3Sm-0.7Al casting alloy when heat-treated at 873 K.Atomic-resolution high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM) characterizations indicate that most of them are Mg-containing Al_(2)(Gd,Sm),with the atomic ratio of Mg:Al:(Gd,Sm) being ~1:1:1;a small part of them with relatively wider thickness are long-period stacking ordered(LPSO) phases simultaneously containing both 14H and 18R structures.Both followed common orientation relationships with Mg matrix as those reported in previous work.In addition,many Mg laths were observed in the primary blocky Al_(2)(Gd,Sm) phase at grain boundaries,where the atomic ratio of Al:(Gd,Sm) in the Al_(2)(Gd,Sm) matrix was 2:1.Finally,density functional theory(DFT) calculations illustrated the detail structure of the re-constructed Mg/Al_(2)RE interface and simultaneously deduced the underlying reason for the re-dissolution of the newly formed Mg-containing Al_(2)(Gd,Sm) plates in α-Mg matrix.
基金financial support from the Sichuan Science and Technology Program(No.2022NSFSC0226)Open Fund(PLN2021–17)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)Science and Technology Project of Southwest Petroleum University(No.2021JBGS08).
文摘Hydrogen,meeting the requirements of sustainable development,is regarded as the ultimate energy in the 21st century.Due to the inexhaustible and feasible of solar energy,solar water splitting is an immensely promising strategy for environmental-friendly hydrogen production,which not only overcomes the fluctuation and intermittency but also contributes to achieving the mission of global“Carbon Neutrality and Carbon Peaking”.However,there is still a lack of a comprehensive overview focusing on hydrogen progress with a discussion of development from solar energy to solar cells.Herein,we emphasize several solar-to-hydrogen pathways from the basic concepts and principles and focus on photovoltaic-electrolysis and photoelectrochemical/photovoltaic systems,which have achieved solar-to-hydrogen(STH)efficiency of over 10%and have extremely promising for large-scale application.In addition,we summarize the challenges and opportunities faced in this field including configuration design,electrode materials,and performance evaluation.Finally,perspectives on the potential commercial application and scientific research for the further development of solar-to-hydrogen are analyzed and presented.
基金Chinese Academy of Sciences Youth Innovation Promotion Association(No.2023234)Scientific and Technological Developing Scheme of Jilin Province(No.20220402012GH)+2 种基金National Natural Science Foundation of China(No.U21A20323)Capital Construction Fund within the Budget of Jilin Province(No.2023C044-2)Major science and technology projects of Jilin Province and Changchun City(No.20220301026GX),the Special high-tech。
文摘Relationship between precipitation strengthening and creep resistance improvement has been an impor-tant topic for the widespread applications of magnesium alloys.Generally,static precipitation strength-ening through thermal stable precipitates would generate satisfactory creep resistance.However,an op-posite example is presented in this work and we propose that the size of precipitates plays a crucial role in controlling the operative creep mechanisms.In addition,the precipitate components along with their crystal structures in the crept Mg-4Al-3Sm-0.4Mn samples with/without pre-aging were thor-oughly studied using Cs aberration-corrected high-angle annular dark-field scanning transmission elec-tron microscopy(HAADF-STEM).Previous aging generates a large density of fine precipitates(<~5 nm)homogeneously distributing in Mg matrix and exhibiting satisfactory strengthening effect.However,the number density of precipitate strings consisting of several or even dozens of relatively coarse precipitates(~10 nm)was significantly decreased at the same time.As revealed in this work,the relatively coarse particles in Mg matrix are much more efficient than the fine precipitates in promoting dislocation climb.Therefore,the rate-controlling mechanisms are transferred from dislocation climb to dislocation slip after previous aging,thus leading to degradation of creep resistance.Moreover,there are mainly five types of precipitates/clusters,namelyβ"-(Al,Mg)3Sm,Al5Sm3,ordered Al-Sm cluster,ordered Al-Mn cluster and ordered/unordered AlMnSm clusters.The crystal structures of the former two precipitates were discussed and the formation mechanisms of the precipitates/clusters were revealed.
基金financially supported by the Projects for Science and Technology of Jilin Province(Nos.20210402064GH and 20220402012GH)the National Natural Science Foundation of China(No.U21A20323)+3 种基金the Capital Construction Fund within the Budget of Jilin Province(No.2023C044-2)the Special High-Tech Industrialization Project of Science and Technology Cooperation between Jilin Province and Chinese Academy of Sciences(No.2021SYHZ0043)the Major science and technology projects of Jilin Province and Changchun City(No.20210301024GX)the Project for Jilin provincial department of education(No.JJKH20220760KJ)。
文摘Mg-Al-Zn-Mn(AZ)system alloys have become widely used due to their good castability,excellent formability and outstanding corrosion resistance[1-6].However,their strength is still much lower than that of traditional Mg-RE(rare earth)based alloys or even some new Mg-Li basedalloys[7-19].
基金financially supported by the Scientific and Technological Developing Scheme of Jilin Province under grants no.20220402012GHthe National Natural Science Foundation of China under grants no.U21A20323+3 种基金the Capital Construction Fund within the Budget of Jilin Province no.2021C038-1the Special high-tech industrialization project of science and technology cooperation between Jilin Province and Chinese Academy of Sciences under grant no.2021SYHZ0043 and 2022SYHZ0038the Major science and technology projects of Jilin Province and Changchun City under grant no.20210301024GXthe Project for Jilin provincial department of education under grant no.JJKH20220760KJ。
文摘This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting traditional basal texture,it owns an exceptional CYS/TYS as high as~1.17.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)examinations indicate pyramidal and prismatic dislocations plus tensile twinning being activated after immediate yielding in compression while basal and non-basal dislocations in tension.I-phase particles transferred the concentrated stress by self-twinning to provide the driving force for tensile twin initiating in neighboring grains,thereby significantly increasing the critical resolved shear stress of tensile twinning to possibly the level of pyramidal slip,finally leading to the dominance of pyramidal slip plus tensile twinning in texture grains.This results in a higher contribution on yield strength by~55 MPa in compression than in tension,which reasonably agrees with the experimental yield strength difference(~38 MPa).It can be concluded that I-phase particles influence deformation modes in tension and in compression,finally result in reversed yield strength asymmetry.
基金Project supported by the Scientific and Technological Developing Scheme of Jilin Province(20220101239JC,YDZJ202301ZYTS538)the Chinese Academy of Sciences Youth Innovation Promotion Association(2023234)。
文摘A high-pressure die casting(HPDC)Mg-5Gd-1.5Sm-0.7Al alloy was newly developed and exhibits outstanding strength-ductility synergy,with the yield strength and the tensile elongation to fracture being approximately 200 MPa and 8.5%,respectively.This alloy has two types of a-Mg grains:coarse a_(1)-Mg((46±18)μm)and fine a_(2)-Mg((9.2±2.3)μm)grains,and various Al-GS(GS=Gd and Sm)particles located at grain boundaries while clear solute-atom segregation near grain boundaries with limited or free intermetallic particles.Characterizations using Cs-corrected high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)indicate the crystal structures of Al-GS phases.After aging,denseβ'precipitates and chain-shapedβ''-like structures precipitated near grain boundaries while a high density of ultrafineβ''-(Mg,Al)3Sm precipitates and Al-GS clusters formed in grain center.Relatively fine grains,Al-GS primary particles,solute-atom segregation near grain boundaries,and/or multiple precipitates contribute to the high strength of the studied alloy,while the multi-scale a-Mg grains,variety of intermetallic particles but discontinuous skeleton,and the multi-typed precipitated lead to its satisfactory ductility.