期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于SWMM模型的万州龙宝河片区径流污染控制研究 被引量:4
1
作者 袁绍春 牟伟 +3 位作者 吕波 杨清伟 樵凌枫 郑若烨 《环境污染与防治》 CAS CSCD 北大核心 2023年第6期765-770,776,共7页
为评价重庆万州龙宝河片区海绵城市改造的径流污染控制效果,运用SWMM模型模拟该片区的径流过程,研究不同重现期下绿色屋顶、透水铺装、生物滞留带等低影响开发(LID)设施对污染物的控制效果。结果表明:当重现期为1~50 a时,LID设施对悬浮... 为评价重庆万州龙宝河片区海绵城市改造的径流污染控制效果,运用SWMM模型模拟该片区的径流过程,研究不同重现期下绿色屋顶、透水铺装、生物滞留带等低影响开发(LID)设施对污染物的控制效果。结果表明:当重现期为1~50 a时,LID设施对悬浮固体(SS)、化学需氧量(COD)、总磷(TP)、总氮(TN)的总量削减率分别可达47%~72%、56%~70%、48%~64%、43%~66%;对上述污染物峰值浓度的削减率分别为31.31%~41.05%、25.12%~38.93%、22.50%~31.38%、13.39%~21.76%,并能延迟峰现时间2~11 min。由此可见,海绵城市改造能够有效缓解径流污染,但随着重现期增加,控制效果会变差,说明海绵城市更适用于低降雨强度的径流污染控制。 展开更多
关键词 径流污染控制 重现期 低影响开发设施 SWMM模型 海绵城市
在线阅读 下载PDF
Transfer Learning Based on Joint Feature Matching and Adversarial Networks 被引量:1
2
作者 ZHONG Haowen WANG Chao +3 位作者 TUO Hongya HU Jian qiao lingfeng JING Zhongliang 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第6期699-705,共7页
Domain adaptation and adversarial networks are two main approaches for transfer learning.Domain adaptation methods match the mean values of source and target domains,which requires a very large batch size during train... Domain adaptation and adversarial networks are two main approaches for transfer learning.Domain adaptation methods match the mean values of source and target domains,which requires a very large batch size during training.However,adversarial networks are usually unstable when training.In this paper,we propose a joint method of feature matching and adversarial networks to reduce domain discrepancy and mine domaininvariant features from the local and global aspects.At the same time,our method improves the stability of training.Moreover,the method is embedded into a unified convolutional neural network that can be easily optimized by gradient descent.Experimental results show that our joint method can yield the state-of-the-art results on three common public datasets. 展开更多
关键词 transfer learning adversarial networks feature matching domain-invariant features
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部