The ascent of the metaverse signifies a profound transformation in our digital landscape, ushering in a complex network of interlinked virtual domains and digital spaces. In this burgeoning metaverse, a paradigm shift...The ascent of the metaverse signifies a profound transformation in our digital landscape, ushering in a complex network of interlinked virtual domains and digital spaces. In this burgeoning metaverse, a paradigm shift is seen in how people engage, collaborate, and become immersed in digital environments. An especially intriguing concept taking root within this metaverse landscape is that of digital twins. Initially rooted in industrial and Internet of Things(IoT) contexts, digital twins are now making their mark in the metaverse, presenting opportunities to elevate user experiences, introduce novel dimensions of interaction, and seamlessly bridge the divide between the virtual and physical realms. Digital twins, conceived initially to replicate physical entities in real-time, have transcended their industrial origins in this new metaverse context. They no longer solely replicate physical objects but extend their domain to encompass digital entities, avatars, virtual environments, and users. Despite the vital contributions of digital twins in the metaverse, there has been no research that has explored the applications and scope of digital twins in the metaverse comprehensively. However, there are a few papers focusing on some particular applications. Addressing this research gap, we present an in-depth review of the pivotal role of application digital twins in the metaverse. We present 15 digital twin applications in the metaverse, ranging from simulation and training to emergency preparedness. This study outlines the critical limitations of integrating digital twins and metaverse and several future research directions.展开更多
The impedances of Pi- and T- networks are obtained from the measured S-parameters of the multilayer microstrip line by modeling as an attenuator. The changes in impedances have been analyzed for the properties of vari...The impedances of Pi- and T- networks are obtained from the measured S-parameters of the multilayer microstrip line by modeling as an attenuator. The changes in impedances have been analyzed for the properties of various superstrates at the microwave ranges. With graphene on glass and graphene on quartz loadings, the impedances have increased and shifted towards lower frequency more in Pi-network than T-network modeling. This shift has become more prominent at higher frequency for the graphene on glass than graphene on quartz. A little increase in attenuation is found for graphene on glass or quartz than bare glass and quartz. The present study can be extended to obtain attenuation characteristic of any thin film by simple experimental method in the microwave frequencies.展开更多
文摘The ascent of the metaverse signifies a profound transformation in our digital landscape, ushering in a complex network of interlinked virtual domains and digital spaces. In this burgeoning metaverse, a paradigm shift is seen in how people engage, collaborate, and become immersed in digital environments. An especially intriguing concept taking root within this metaverse landscape is that of digital twins. Initially rooted in industrial and Internet of Things(IoT) contexts, digital twins are now making their mark in the metaverse, presenting opportunities to elevate user experiences, introduce novel dimensions of interaction, and seamlessly bridge the divide between the virtual and physical realms. Digital twins, conceived initially to replicate physical entities in real-time, have transcended their industrial origins in this new metaverse context. They no longer solely replicate physical objects but extend their domain to encompass digital entities, avatars, virtual environments, and users. Despite the vital contributions of digital twins in the metaverse, there has been no research that has explored the applications and scope of digital twins in the metaverse comprehensively. However, there are a few papers focusing on some particular applications. Addressing this research gap, we present an in-depth review of the pivotal role of application digital twins in the metaverse. We present 15 digital twin applications in the metaverse, ranging from simulation and training to emergency preparedness. This study outlines the critical limitations of integrating digital twins and metaverse and several future research directions.
文摘The impedances of Pi- and T- networks are obtained from the measured S-parameters of the multilayer microstrip line by modeling as an attenuator. The changes in impedances have been analyzed for the properties of various superstrates at the microwave ranges. With graphene on glass and graphene on quartz loadings, the impedances have increased and shifted towards lower frequency more in Pi-network than T-network modeling. This shift has become more prominent at higher frequency for the graphene on glass than graphene on quartz. A little increase in attenuation is found for graphene on glass or quartz than bare glass and quartz. The present study can be extended to obtain attenuation characteristic of any thin film by simple experimental method in the microwave frequencies.