In this paper, necessary optimality conditions for a class of Semi-infinite Variational Problems are established which are further generalized to a class of Multi-objective Semi-Infinite Variational Problems. These co...In this paper, necessary optimality conditions for a class of Semi-infinite Variational Problems are established which are further generalized to a class of Multi-objective Semi-Infinite Variational Problems. These conditions are responsible for the development of duality theory which is an extremely important feature for any class of problems, but the literature available so far lacks these necessary optimality conditions for the stated problem. A lemma is also proved to find the topological dual of as it is required to prove the desired result.展开更多
In the present paper the definition of invexity for continuous functions is extended to invexity of order m which is further generalized to ρ-pseudoinvexity type I of order m, ρ-pseudoinvexity type II of order m, as...In the present paper the definition of invexity for continuous functions is extended to invexity of order m which is further generalized to ρ-pseudoinvexity type I of order m, ρ-pseudoinvexity type II of order m, as well as ρ-quasi invexity type I of order m and ρ-quasiinvexity type II of order m. The central objective of the paper is to study variational problem where the functionals involved satisfy the above stated generalized ρ-invexity assumptions of order m. Wolfe type and Mond Weir type of duals are formulated. Sufficient optimality conditions and duality results are proved. It is demonstrated with the help of an example that the class of ρ-invex functionals of order m is more general than the class of ρ-invex functionals. Further, it may be noted that the results presented in this paper are more powerful than the existing results as this new class of functions defined here satisfies mth derivative test.展开更多
The notion of higher-order B-type I functional is introduced in this paper.This notion is utilized to study optimality and duality for multiobjective semi-infinite variational problem in which the index set of inequal...The notion of higher-order B-type I functional is introduced in this paper.This notion is utilized to study optimality and duality for multiobjective semi-infinite variational problem in which the index set of inequality constraints is an infinite set.The concept of efficiency is used as a tool for optimization.Mond–Weir type of dual is proposed for which weak,strong,and strict converse duality theorems are proved to relate efficient solutions of primal and dual problems.展开更多
In this paper,we explore a class of interval-valued programming problem where constraints are interval-valued and infinite.Necessary optimality conditions are derived.Notion of generalized(Φ,ρ)−invexity is utilized ...In this paper,we explore a class of interval-valued programming problem where constraints are interval-valued and infinite.Necessary optimality conditions are derived.Notion of generalized(Φ,ρ)−invexity is utilized to establish sufficient optimality conditions.Further,two duals,namely Wolfe and Mond–Weir,are proposed for which duality results are proved.展开更多
文摘In this paper, necessary optimality conditions for a class of Semi-infinite Variational Problems are established which are further generalized to a class of Multi-objective Semi-Infinite Variational Problems. These conditions are responsible for the development of duality theory which is an extremely important feature for any class of problems, but the literature available so far lacks these necessary optimality conditions for the stated problem. A lemma is also proved to find the topological dual of as it is required to prove the desired result.
文摘In the present paper the definition of invexity for continuous functions is extended to invexity of order m which is further generalized to ρ-pseudoinvexity type I of order m, ρ-pseudoinvexity type II of order m, as well as ρ-quasi invexity type I of order m and ρ-quasiinvexity type II of order m. The central objective of the paper is to study variational problem where the functionals involved satisfy the above stated generalized ρ-invexity assumptions of order m. Wolfe type and Mond Weir type of duals are formulated. Sufficient optimality conditions and duality results are proved. It is demonstrated with the help of an example that the class of ρ-invex functionals of order m is more general than the class of ρ-invex functionals. Further, it may be noted that the results presented in this paper are more powerful than the existing results as this new class of functions defined here satisfies mth derivative test.
基金Jyoti was supported by University Grant Commission Non-NET research fellowship,India(No.Schs/Non-NET/139/Ext-142/2015-16/1931).
文摘The notion of higher-order B-type I functional is introduced in this paper.This notion is utilized to study optimality and duality for multiobjective semi-infinite variational problem in which the index set of inequality constraints is an infinite set.The concept of efficiency is used as a tool for optimization.Mond–Weir type of dual is proposed for which weak,strong,and strict converse duality theorems are proved to relate efficient solutions of primal and dual problems.
基金Bharti Sharma was supported by Council of Scientific and Industrial Research,Senior Research Fellowship,India(No.09/045(1350)/2014-EMR-1)Jyoti Dagar was supported by University Grant Commission Non-NET research fellowship,India(No.Non-NET/139/Ext-136/2014).
文摘In this paper,we explore a class of interval-valued programming problem where constraints are interval-valued and infinite.Necessary optimality conditions are derived.Notion of generalized(Φ,ρ)−invexity is utilized to establish sufficient optimality conditions.Further,two duals,namely Wolfe and Mond–Weir,are proposed for which duality results are proved.