期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Aerodynamic optimization using passive control devices near the bogie cabin of high-speed trains 被引量:2
1
作者 Yongfang Yao Zhenxu Sun +4 位作者 Guibo Li Guowei Yang prasert prapamonthon Yi Guo Mengying Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第9期48-63,共16页
Bogies are responsible for a significant amount of aerodynamic resistance and noise,both of which negatively affect high-speed train performance and passenger comfort.In the present study,the passive control method is... Bogies are responsible for a significant amount of aerodynamic resistance and noise,both of which negatively affect high-speed train performance and passenger comfort.In the present study,the passive control method is applied in designing the bogie cabins of a high-speed train to improve its aerodynamic characteristics.Two passive control measures are introduced,namely,adding a spoiler and creating diversion grooves near the bogie cabins.Furthermore,the aerodynamic and aeroacoustic characteristics of a high-speed train operating at 350 km/h under different control strategies are numerically investigated using the improved-delayed-detached-eddy simulation(IDDES)and the acoustic finite element method(FEM).The impacts of passive control devices on drag reduction,slipstream,and aerodynamic noise are presented and discussed.Numerical results reveal that the passive control devices have a major effect on the slipstream around the train.The amplitude of the fluctuating pressure is higher in the first half of the train than in the second half.The first bogie has the maximum amplitude of the acoustic pressure for both the train with and without passive devices.In the far field,the spoiler installation and placement of the diversion grooves in the front of the bogie cabin can significantly reduce aerodynamic drag and noise.Hence,as shown in this study,using passive control methods to improve the aerodynamic and aeroacoustic properties of high-speed trains can be a viable option. 展开更多
关键词 Passive control devices Aerodynamic drag SLIPSTREAM Aerodynamic noise High-speed trains
原文传递
CHT/CFD Analysis of Thermal Sensitivity of a Transonic Film-Cooled Guide Vane
2
作者 prasert prapamonthon Soemsak Yooyen Suwin Sleesongsom 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第6期593-615,共23页
Thermal parameters are important variables that have great influence on life time of turbine vanes.Therefore,accurate prediction of the thermal parameters is essential.In this study,a numerical approach for conjugate ... Thermal parameters are important variables that have great influence on life time of turbine vanes.Therefore,accurate prediction of the thermal parameters is essential.In this study,a numerical approach for conjugate heat transfer(CHT)and computational fluid dynamics(CFD)is used to investigate thermal sensitivity of a transonic guide vane which is fully film-cooled by 199 film holes.Thermal barrier coating(TBC),i.e.,the typical TBC and a new one as the candidate TBC,and turbulence intensity(Tu),i.e.,Tu=3.3%,10%and 20%,are two variables used for the present study.At first the external surface temperatures of the vane material are compared.Next,the TBC surface temperatures are considered.Results show the major role of the lower thermal conductivity of TBC which results in the lower and more uniform temperature on the external surface of the vane substrate.Finally,the thermal sensitivity is presented in terms of the percentage reduction of the external surface temperatures of the vane material and the structural temperatures of the vane material at midspan,including the variations of average and maximum vane temperatures.Results show that TBC and Tu have significant effects on the external surface and structural temperatures of the vane substrate.The lower thermal conductivity of TBC leads to the higher difference between the thermal conductivity of the vane substrate and TBC,the reduction of heat transfer and the more uniform temperature within the vane structure.The results also show more effective protection for the average vane temperature from the two TBCs at higher Tus.However,Tu does not significantly affect the reduction of the maximum vane temperature even though the new TBC,which has the very low thermal conductivity,is used. 展开更多
关键词 CONJUGATE HEAT TRANSFER FILM COOLING thermal sensitivity
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部