ENN He Long-2(EHL-2)is the next-generation large mega-Ampere(MA)spherical torus(ST)proposed and funded by the ENN company.The design parameters are:Ti0>30 keV,n_(e0)~1×10^(20)m^(-3),Ip~3 MA,Bt~3 T.One of the b...ENN He Long-2(EHL-2)is the next-generation large mega-Ampere(MA)spherical torus(ST)proposed and funded by the ENN company.The design parameters are:Ti0>30 keV,n_(e0)~1×10^(20)m^(-3),Ip~3 MA,Bt~3 T.One of the biggest challenges of EHL-2 is how to achieve several MA current flat-tops with limited voltage-seconds(Vs)of the center solenoid(CS)coils.In order to minimize the consumption of Vs,a fully non-inductive start-up by electron cyclotron resonance heating(ECRH)will be applied in EHL-2.The ramp-up phase will be accomplished with the synergetic mode between the CS and non-inductive methods.The strategy of non-inductive start-up and ramp-up with synergetic mode has been verified on EXL-50U’s experiments.Based on this strategy,numerical simulations indicate the feasibility of EHL-2 achieving 3 MA plasma current.A high-performance steady-state scenario with Ip~1.5 MA is also designed.In this scenario,the bootstrap current fraction fBS>70%,the safety factor q at the magnetic axis q0>2,the minimum safety factor qmin>1,the poloidal betaβp>3 and normalized betaβN>2.3.Each design iteration integrates the validation of physical models with the constraints of engineering implementation,gradually optimizing the performance of the heating and current drive(H&CD)systems.Numerical simulation results for general auxiliary H&CD systems such as neutral beam injection(NBI),electron cyclotron(EC)wave,ion cyclotron wave(ICW),and lower hybrid wave(LHW)are presented.These simulation results ensure that the 31 MW H&CD systems comprehensively cover all scenarios while maintaining engineering feasibility.展开更多
According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarator...According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarators.Using the constructed 0D model,the results obtained in this study under the same conditions are compared and validated against reference results for pure hydrogen plasma start-up in tokamak.The results are in good agreement,especially regarding electron temperature,ion temperature and plasma current.In the presence of finite Ohmic electric field in the spherical tokamak,a study on the EC wave assisted start-up of the NCST plasma at frequency of 28 GHz is conducted.The impact of the vertical magnetic field B_(v)on EC wave assisted start-up,the relationship between EC wave injection power P_(inj),Ohmic electric field E,and initial hydrogen atom density n_(H0)are explored separately.It is found that under conditions of Ohmic electric field lower than ITER(~0.3 V m^(-1)),EC wave can expand the operational space to achieve better plasma parameters.Simulating the process of28 GHz EC wave start-up in the CN-H1 stellarator plasma,the plasma current in the zerodimensional model is replaced with the current in the poloidal coil of the stellarator.Plasma startup can be successfully achieved at injection powers in the hundreds of kilowatts range,resulting in electron densities on the order of 10^(17)-10^(18)m^(-3).展开更多
基金supported by ENN Group and ENN Energy Research Institute.The authors would like to express their gratitude for the contributions of the ENN fusion team and collaborators,such as Tiantian Sun,Haojie Ma,and Yong Guo,in supporting these endeavours.The authors also acknowledge the support of the National SuperComputer Center in Tianjin and Beijing PARATERA Tech Corp.,Ltd.,for providing HPC resources that have contributed to the research results reported in this paper.This work was partly supported by National Natural Science Fundation of China(Nos.12375215 and 12475210).
文摘ENN He Long-2(EHL-2)is the next-generation large mega-Ampere(MA)spherical torus(ST)proposed and funded by the ENN company.The design parameters are:Ti0>30 keV,n_(e0)~1×10^(20)m^(-3),Ip~3 MA,Bt~3 T.One of the biggest challenges of EHL-2 is how to achieve several MA current flat-tops with limited voltage-seconds(Vs)of the center solenoid(CS)coils.In order to minimize the consumption of Vs,a fully non-inductive start-up by electron cyclotron resonance heating(ECRH)will be applied in EHL-2.The ramp-up phase will be accomplished with the synergetic mode between the CS and non-inductive methods.The strategy of non-inductive start-up and ramp-up with synergetic mode has been verified on EXL-50U’s experiments.Based on this strategy,numerical simulations indicate the feasibility of EHL-2 achieving 3 MA plasma current.A high-performance steady-state scenario with Ip~1.5 MA is also designed.In this scenario,the bootstrap current fraction fBS>70%,the safety factor q at the magnetic axis q0>2,the minimum safety factor qmin>1,the poloidal betaβp>3 and normalized betaβN>2.3.Each design iteration integrates the validation of physical models with the constraints of engineering implementation,gradually optimizing the performance of the heating and current drive(H&CD)systems.Numerical simulation results for general auxiliary H&CD systems such as neutral beam injection(NBI),electron cyclotron(EC)wave,ion cyclotron wave(ICW),and lower hybrid wave(LHW)are presented.These simulation results ensure that the 31 MW H&CD systems comprehensively cover all scenarios while maintaining engineering feasibility.
基金supported by the National Key Research and Development Program of China(Nos.2022YFE03070000 and 2022YFE03070003)National Natural Science Foundation of China(Nos.12375220 and 12075114)。
文摘According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarators.Using the constructed 0D model,the results obtained in this study under the same conditions are compared and validated against reference results for pure hydrogen plasma start-up in tokamak.The results are in good agreement,especially regarding electron temperature,ion temperature and plasma current.In the presence of finite Ohmic electric field in the spherical tokamak,a study on the EC wave assisted start-up of the NCST plasma at frequency of 28 GHz is conducted.The impact of the vertical magnetic field B_(v)on EC wave assisted start-up,the relationship between EC wave injection power P_(inj),Ohmic electric field E,and initial hydrogen atom density n_(H0)are explored separately.It is found that under conditions of Ohmic electric field lower than ITER(~0.3 V m^(-1)),EC wave can expand the operational space to achieve better plasma parameters.Simulating the process of28 GHz EC wave start-up in the CN-H1 stellarator plasma,the plasma current in the zerodimensional model is replaced with the current in the poloidal coil of the stellarator.Plasma startup can be successfully achieved at injection powers in the hundreds of kilowatts range,resulting in electron densities on the order of 10^(17)-10^(18)m^(-3).