Objective A high sodium(HS)diet is believed to affect bone metabolism processes.Clarifying its impact on osseointegration of titanium(Ti)implants holds significant implications for postoperative dietary management of ...Objective A high sodium(HS)diet is believed to affect bone metabolism processes.Clarifying its impact on osseointegration of titanium(Ti)implants holds significant implications for postoperative dietary management of implanted patients.Methods This investigation probed the impact of sodium ions(Na^(+))on neovascularization and osteogenesis around Ti implants in vivo,utilizing micro-computed tomography,hematoxylin and eosin staining,and immunohistochemical analyses.Concurrently,in vitro experiments assessed the effects of varied Na^(+)concentrations and exposure durations on human umbilical vein endothelial cells(HUVECs)and MC3T3-E1 cells.Results In vivo,increased dietary sodium(0.8%-6.0%)led to a substantial decline in CD34 positive HUVECs and new bone formation around Ti implants,alongside an increase in inflammatory cells.In vitro,an increase in Na^(+)concentration(140-150 mmol/L)adversely affected the proliferation,angiogenesis,and migration of HUVECs,especially with prolonged exposure.While MC3T3-E1 cells initially exhibited less susceptibility to high Na^(+)concentrations compared to HUVECs during short-term exposure,prolonged exposure to a HS environment progressively diminished their proliferation,differentiation,and osteogenic capabilities.Conclusion These findings suggest that HS diet had a negative effect on the early osseointegration of Ti implants by interfering with the process of postoperative vascularized bone regeneration.展开更多
The excessive accumulation of reactive oxygen species(ROS)under osteoporosis precipitates a microenvironment with high levels of oxidative stress(OS).This could significantly interfere with the bioactivity of conventi...The excessive accumulation of reactive oxygen species(ROS)under osteoporosis precipitates a microenvironment with high levels of oxidative stress(OS).This could significantly interfere with the bioactivity of conventional titanium implants,impeding their early osseointegration with bone.We have prepared a series of strontium(Sr)-doped titanium implants via micro-arc oxidation(MAO)to verify their efficacy and differences in osteoinduction capabilities under normal and osteoporotic(high OS levels)conditions.Apart from the chemical composition,all groups exhibited similar physicochemical properties(morphology,roughness,crystal structure,and wettability).Among the groups,the low Sr group(Sr25%)was more conducive to osteogenesis under normal conditions.In contrast,by increasing the catalase(CAT)/superoxide dismutase(SOD)activity and decreasing ROS levels,the high Sr-doped samples(Sr75% and Sr100%)were superior to Sr25% in inducing osteogenic differentiation of MC3T3-E1 cells and the M2 phenotype polarization of RAW264.7 cells,thus enhancing early osseointegration.Furthermore,the results of both in vitro cell co-culture and in vivo studies also showed that the high Sr-doped samples(especially Sr100%)had positive effects on osteoimmunomodulation under the OS microenvironment.Ultimately,the collated findings indicated that the high proportion Sr-doped MAO coatings were more favorable for osteoporosis patients in implant restorations.展开更多
基金funded by the Wenzhou Public Welfare Science and Technology Project(Y2020118)Zhejiang Provincial Science and Technology Project for Public Welfare(LQ23H140001)Wenzhou Medical University Basic Scientific Research Operating Expenses(KYYW202230).
文摘Objective A high sodium(HS)diet is believed to affect bone metabolism processes.Clarifying its impact on osseointegration of titanium(Ti)implants holds significant implications for postoperative dietary management of implanted patients.Methods This investigation probed the impact of sodium ions(Na^(+))on neovascularization and osteogenesis around Ti implants in vivo,utilizing micro-computed tomography,hematoxylin and eosin staining,and immunohistochemical analyses.Concurrently,in vitro experiments assessed the effects of varied Na^(+)concentrations and exposure durations on human umbilical vein endothelial cells(HUVECs)and MC3T3-E1 cells.Results In vivo,increased dietary sodium(0.8%-6.0%)led to a substantial decline in CD34 positive HUVECs and new bone formation around Ti implants,alongside an increase in inflammatory cells.In vitro,an increase in Na^(+)concentration(140-150 mmol/L)adversely affected the proliferation,angiogenesis,and migration of HUVECs,especially with prolonged exposure.While MC3T3-E1 cells initially exhibited less susceptibility to high Na^(+)concentrations compared to HUVECs during short-term exposure,prolonged exposure to a HS environment progressively diminished their proliferation,differentiation,and osteogenic capabilities.Conclusion These findings suggest that HS diet had a negative effect on the early osseointegration of Ti implants by interfering with the process of postoperative vascularized bone regeneration.
基金funded by National Natural Science Foundation of China(82171004,82071170&81701016)Zhejiang Provincial Science and Technology Project for Public Welfare(LY21H180006&LGF20H140002)+2 种基金Key Technological Innovation Projects of Wenzhou(ZY2019009)Wenzhou Public Welfare Science and Technology Project(Y20190099&Y2020118)Wenzhou Medical University Basic Scientific Research Operating Expenses(KYYW201905).
文摘The excessive accumulation of reactive oxygen species(ROS)under osteoporosis precipitates a microenvironment with high levels of oxidative stress(OS).This could significantly interfere with the bioactivity of conventional titanium implants,impeding their early osseointegration with bone.We have prepared a series of strontium(Sr)-doped titanium implants via micro-arc oxidation(MAO)to verify their efficacy and differences in osteoinduction capabilities under normal and osteoporotic(high OS levels)conditions.Apart from the chemical composition,all groups exhibited similar physicochemical properties(morphology,roughness,crystal structure,and wettability).Among the groups,the low Sr group(Sr25%)was more conducive to osteogenesis under normal conditions.In contrast,by increasing the catalase(CAT)/superoxide dismutase(SOD)activity and decreasing ROS levels,the high Sr-doped samples(Sr75% and Sr100%)were superior to Sr25% in inducing osteogenic differentiation of MC3T3-E1 cells and the M2 phenotype polarization of RAW264.7 cells,thus enhancing early osseointegration.Furthermore,the results of both in vitro cell co-culture and in vivo studies also showed that the high Sr-doped samples(especially Sr100%)had positive effects on osteoimmunomodulation under the OS microenvironment.Ultimately,the collated findings indicated that the high proportion Sr-doped MAO coatings were more favorable for osteoporosis patients in implant restorations.