Long-cycling dendrite-free solid-state lithium metal batteries (LMBs) require fast and uniform lithium-ion (Liþ)transport of solid-state electrolytes (SSEs). However, the SSEs still face the problems of low ionic...Long-cycling dendrite-free solid-state lithium metal batteries (LMBs) require fast and uniform lithium-ion (Liþ)transport of solid-state electrolytes (SSEs). However, the SSEs still face the problems of low ionic conductivity, lowLiþ transference number, and unstable interface with lithium metal. In this work, a novel strategy of frustratedLewis pairs (FLPs) modulating solid polymer electrolytes (SPEs) has been firstly proposed that enables durable Lireversible cycling. The tunable strength of Lewis acid and base dual-active sites of nickel borate FLPs can syn-ergisticallypromote both the dissociation of lithium salts and the transfer of Liþ. As a consequence, the FLPsmodulated SPEs (SPE-NiBO-150) exhibit high ionic conductivity of 4.92×10^(-4)S cm^(-1), high Liþ transferencenumber of 0.74, and superior interface compatibility with both lithium anode and LiFePO4 cathode at room-temperature.The Li//SPE-NiBO-150//Li symmetric cell demonstrates ultralong cycle stability (over 10,000 h(417 days) at both current density of 0.2 and 0.5 mA cm〓〓2), and the assembled solid-state LiFePO4//SPE-NiBO-150//Libattery also shows excellent performance (86% capacity retention for 300 cycles at 0.5C). The presentwork supplies a new insight into designing high-performance SPEs for solid-state LMB applications.展开更多
基金supported by the National Natural Science Foundation of China(52162036,52174284 and 22378342)the Key Project of Nature Science Foundation of Xinjiang Province(2021D01D08)the Key Research and Development Program of Hunan Province(2024JK2094).
文摘Long-cycling dendrite-free solid-state lithium metal batteries (LMBs) require fast and uniform lithium-ion (Liþ)transport of solid-state electrolytes (SSEs). However, the SSEs still face the problems of low ionic conductivity, lowLiþ transference number, and unstable interface with lithium metal. In this work, a novel strategy of frustratedLewis pairs (FLPs) modulating solid polymer electrolytes (SPEs) has been firstly proposed that enables durable Lireversible cycling. The tunable strength of Lewis acid and base dual-active sites of nickel borate FLPs can syn-ergisticallypromote both the dissociation of lithium salts and the transfer of Liþ. As a consequence, the FLPsmodulated SPEs (SPE-NiBO-150) exhibit high ionic conductivity of 4.92×10^(-4)S cm^(-1), high Liþ transferencenumber of 0.74, and superior interface compatibility with both lithium anode and LiFePO4 cathode at room-temperature.The Li//SPE-NiBO-150//Li symmetric cell demonstrates ultralong cycle stability (over 10,000 h(417 days) at both current density of 0.2 and 0.5 mA cm〓〓2), and the assembled solid-state LiFePO4//SPE-NiBO-150//Libattery also shows excellent performance (86% capacity retention for 300 cycles at 0.5C). The presentwork supplies a new insight into designing high-performance SPEs for solid-state LMB applications.