As an essential part of the urban infrastructure,underground utility tunnels have a long service life,complex structural performance evolution and dynamic changes both inside and outside the tunnel.These combined fact...As an essential part of the urban infrastructure,underground utility tunnels have a long service life,complex structural performance evolution and dynamic changes both inside and outside the tunnel.These combined factors result in a wide variety of disaster risks during the operation and maintenance phase,which make risk management and control particularly challenging.This work first reviews three common representative disaster factors during the operation and maintenance period:settlement,earthquakes,and explosions.It summarizes the causes of disasters,key technologies,and research methods.Then,it delves into the research on the intelligent operation and maintenance architecture for utility tunnels.Additionally,it explores the data challenges,monitoring technologies,and management platform architectures faced during the operation and maintenance process.This work provides new research perspectives for the long-term,healthy,and sustainable development of utility tunnels,which serve as the underground arteries of cities.展开更多
Aging and regeneration represent complex biological phenomena that have long captivated the scientific community.To fully comprehend these processes,it is essential to investigate molecular dynamics through a lens tha...Aging and regeneration represent complex biological phenomena that have long captivated the scientific community.To fully comprehend these processes,it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions.Conventional omics methodologies,such as genomics and transcriptomics,have been instrumental in identifying critical molecular facets of aging and regeneration.However,these methods are somewhat limited,constrained by their spatial resolution and their lack of capacity to dynamically represent tissue alterations.The advent of emerging spatiotemporal multi-omics approaches,encompassing transcriptomics,proteomics,metabolomics,and epigenomics,furnishes comprehensive insights into these intricate molecular dynamics.These sophisticated techniques facilitate accurate delineation of molecular patterns across an array of cells,tissues,and organs,thereby offering an in-depth understanding of the fundamental mechanisms at play.This review meticulously examines the significance of spatiotemporal multi-omics in the realms of aging and regeneration research.It underscores how these methodologies augment our comprehension of molecular dynamics,cellular interactions,and signaling pathways.Initially,the review delineates the foundational principles underpinning these methods,followed by an evaluation of their recent applications within the field.The review ultimately concludes by addressing the prevailing challenges and projecting future advancements in the field.Indubitably,spatiotemporal multi-omics are instrumental in deciphering the complexities inherent in aging and regeneration,thus charting a course toward potential therapeutic innovations.展开更多
The high operating temperatures and slow kinetics limit the application of MgH_(2)-based hydrogen storage materials.Here,a composite of Ni_(3)ZnC_(0.7)/carbon nanotubes loaded onto a melamine sponge-derived carbon(MS)...The high operating temperatures and slow kinetics limit the application of MgH_(2)-based hydrogen storage materials.Here,a composite of Ni_(3)ZnC_(0.7)/carbon nanotubes loaded onto a melamine sponge-derived carbon(MS)skeleton is prepared and loaded onto MgH_(2).During dehydrogenation,Ni_(3)ZnC_(0.7)reacts with MgH_(2)and in situ changes to Mg_(2)Ni/Zn.The transformation of Mg_(2)Ni/Mg_(2)NiH_(4) serves as a“hydrogen pump”,providing diffusion channels for hydrogen atoms and molecules to promote the de-/hydrogenation processes.Moreover,Zn/MgZn_(2) provides the catalytic sites for the transformation of Mg/MgH_(2).The length of the Mg-H bond is elongated from 1.72 to 1.995Å,and the dissociation energy barrier of MgH_(2)is reduced from 1.55 to 0.49 eV.As a result,MgH_(2)with 2.5 wt%MS@Ni_(3)ZnC_(0.7)can absorb 5.18 wt%H_(2)at 423 K within 200 s,and its initial dehydrogenation temperature is reduced to 585 K.After 20 cycles,the dehydrogenation capacity retention is determined to be 94.6%.This work demonstrates an efficient non-stoichiometric metal carbide catalyst for MgH_(2).展开更多
Recently, two dimensional In Se attracts great attentions as potential hydrogen production photocatalysts.Here, comprehensive investigations on the hydrogen evolution reaction activity of In Se monolayer with3 d trans...Recently, two dimensional In Se attracts great attentions as potential hydrogen production photocatalysts.Here, comprehensive investigations on the hydrogen evolution reaction activity of In Se monolayer with3 d transition metal doping and biaxial strain were performed based on the density functional theory.Transition metal dopants significantly increase the bonding strength between H and Se, and then adjust the hydrogen adsorption free energy to 0.02 e V by Zn doping. The enhanced hydrogen evolution reaction activity results from less electron occupying H 1 s-Se 4 pzanti-bonding states, which is well correlated with the pzband center level. Importantly, the universal scalling law was proposed to descript the evolution of hydrogen adsorption free energy including both doping and strain effects. Moreover, with appropriate band alignment, optical absorption, and carriers separation ability, Zn doped In Se monolayer is considered as a promising candidate of visible-light photocatalyst for hydrogen production.展开更多
In this work,the thermodynamic,mechanical properties and electronic behaviors of D022-TiAl3 doped with W and 15 groupⅣM(M=C,Ge,Pb,Si and Sn)dopants are investigated by DFT methods.We established that ductility can be...In this work,the thermodynamic,mechanical properties and electronic behaviors of D022-TiAl3 doped with W and 15 groupⅣM(M=C,Ge,Pb,Si and Sn)dopants are investigated by DFT methods.We established that ductility can be improved using multi-doping approach and revealed the mechanisms behind such brittle-to-ductile transition.In addition,it is found that there is linearity between changes in Young’s modulus and tensile/compre s sive strain ratio.An alternate insight into brittle-to-ductile transition during ductile mode cutting of brittle materials is proposed.展开更多
Background: Myoepithelial carcinoma is a rare form of parotid gland cancer characterized by its specific histopathological features involving malignant epithelial and myoepithelial cells. The occurrence of myoepitheli...Background: Myoepithelial carcinoma is a rare form of parotid gland cancer characterized by its specific histopathological features involving malignant epithelial and myoepithelial cells. The occurrence of myoepithelial carcinoma after recurrent parotid gland cancer is particularly rare. Methods: This study describes a patient with myoepithelial carcinoma associated with recurrent parotid gland cancer involving the epiglottis. It includes presentation, recurrence, diagnosis, surgery, and follow-up. A search of PubMed, Enhances, and UK Biobank yielded data on pathologic features and treatment approaches for myoepithelial carcinoma outcomes: The patient originally diagnosed with parotid carcinoma underwent parotidectomy. Recurrence revealed myoepithelial carcinoma, squamous cell carcinoma and spindle cell components. Total parotidectomy followed by partial laryngectomy, reconstruction of laryngeal function, tracheotomy, adjuvant radiotherapy and chemotherapy. The patient was followed up with no evidence of disease. Conclusions: This case is an example of a rare local recurrence in the form of myoepithelial carcinoma after an initial diagnosis of parotid gland cancer. Surgical resection and chemoradiotherapy show promising results in the treatment of this difficult disease.展开更多
With the advent of the big data era and the rise of Industrial Revolution 4.0,digital twins(DTs)have gained sig-nificant attention in various industries.DTs offer the opportunity to combine the physical and digital wor...With the advent of the big data era and the rise of Industrial Revolution 4.0,digital twins(DTs)have gained sig-nificant attention in various industries.DTs offer the opportunity to combine the physical and digital worlds and aid the digital transformation of the civil engineering industry.In this paper,605 documents obtained from the search werefirst analysed using CiteSpace for literature visualisation,and an author co-occurrence network,a keyword co-occurrence network,and a keyword clustering set were obtained.Next,through a literature review of 86 papers,this paper summarises the current status of DT application in civil engineering based on a review of the origins,concepts,and implementation techniques of DTs,and it introduces the application of DTs in the full project lifecycle.This study shows that DTs have great potential to address many of the challenges faced by civil engineering.In this regard,the paper also presents some thoughts on the future directions of DT research.展开更多
Background:Most bone-related injuries to grassroots troops are caused by training or accidental injuries.To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroot...Background:Most bone-related injuries to grassroots troops are caused by training or accidental injuries.To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroots troops,it is imperative to develop new strategies and scafolds to promote bone regeneration.Methods:In this study,a porous piezoelectric hydrogel bone scafold was fabricated by incorporating polydopamine(PDA)-modified ceramic hydroxyapatite(PDA-hydroxyapatite,PHA)and PDA-modified barium titanate(PDABaTiO_(3),PBT)nanoparticles into a chitosan/gelatin(Cs/Gel)matrix.The physical and chemical properties of the Cs/Gel/PHA scafold with 0–10 wt%PBT were analyzed.Cell and animal experiments were performed to characterize the immunomodulatory,angiogenic,and osteogenic capabilities of the piezoelectric hydrogel scafold in vitro and in vivo.Results:The incorporation of BaTiO_(3) into the scafold improved its mechanical properties and increased self-generated electricity.Due to their endogenous piezoelectric stimulation and bioactive constituents,the prepared Cs/Gel/PHA/PBT hydrogels exhibited cytocompatibility as well as immunomodulatory,angiogenic,and osteogenic capabilities;they not only effectively induced macrophage polarization to M2 phenotype but also promoted the migration,tube formation,and angiogenic differentiation of human umbilical vein endothelial cells(HUVECs)and facilitated the migration,osteodifferentiation,and extracellular matrix(ECM)mineralization of MC3T3-E1 cells.The in vivo evaluations showed that these piezoelectric hydrogels with versatile capabilities significantly facilitated new bone formation in a rat large-sized cranial injury model.The underlying molecular mechanism can be partly attributed to the immunomodulation of the Cs/Gel/PHA/PBT hydrogels as shown via transcriptome sequencing analysis,and the PI3K/Akt signaling axis plays an important role in regulating macrophage M2 polarization.Conclusion:The piezoelectric Cs/Gel/PHA/PBT hydrogels developed here with favorable immunomodulation,angiogenesis,and osteogenesis functions may be used as a substitute in periosteum injuries,thereby offering the novel strategy of applying piezoelectric stimulation in bone tissue engineering for the enhancement of combat efectiveness in grassroots troops.展开更多
Solar steam generation is a promising water purification technology due to its low-cost and environmentally friendly applications in water purification and desalination.However,hydrophilic or hydrophobic materials alo...Solar steam generation is a promising water purification technology due to its low-cost and environmentally friendly applications in water purification and desalination.However,hydrophilic or hydrophobic materials alone are insufficient in achieving necessary characteristics for constructing highquality solar steam generators with good comprehensive properties.Herein,novel hydrophile/hydrophobe amphipathic Janus nanofibers aerogel is designed and used as a host material for preparing solar steam generators.The product consists of an internal cubic aerogel and an external layer of photothermal materials.The internal aerogel is composed of electrospun amphipathic Janus nanofibers.Owing to the unique composition and structure,the prepared solar steam generator integrates the features of high water evaporation rate(2.944 kg m^(-2)h^(-1)under 1 kW m^(-2)irradiation),selffloating,salt-resisting,and fast performance recovery after flipping.Moreover,the product also exhibits excellent properties on desalination and removal of organic pollutants.Compared with traditional hydrophilic aerogel host material,the amphipathic Janus nanofibers aerogel brings much higher water evaporation rate and salt resistance.展开更多
In 2022,Yellow Sea green tide caused by Ulva prolifera reached a historic minimum and the coastal areas of Shandong Peninsula were less affected.However,the largest amount of seaweed biomass has been washed ashore on ...In 2022,Yellow Sea green tide caused by Ulva prolifera reached a historic minimum and the coastal areas of Shandong Peninsula were less affected.However,the largest amount of seaweed biomass has been washed ashore on Lianyungang and Rizhao coasts since 2015.We studied the development pattern of Yellow Sea green tide in 2022,and analyzed the key environmental factors on the growth and drifting,then discussed the possible reasons that resulted in the massive stranding of green tide biomass in Lianyungang and Rizhao.Results show under the combined influence of the east to southeast winds and currents with shoreward anomalies,green tide drifted to the coastal waters between Shandong and Jiangsu provinces and the distribution areas located westward compared with previous years(2008–2021).Floating U.prolifera rafts from the coastal waters of Binhai and Sheyang drifted continuously into the coastal waters of Lianyungang and Rizhao,providing important supplements for Yellow Sea green tide.Because green tide in 2022 distributed close to the coastal waters,the abundant nutrients might support their continuous high growth rate.In addition,the amount of rainfall around Shandong Peninsula from late June to early July were significantly higher than in previous years,which might promote the development of green tide to some extent.展开更多
BACKGROUND Oral contrast-enhanced ultrasound(OCEUS)is widely used in the noninvasive diagnosis and screening of gastric cancer(GC)in China.AIM To investigate the clinical application of OCEUS in evaluating the preoper...BACKGROUND Oral contrast-enhanced ultrasound(OCEUS)is widely used in the noninvasive diagnosis and screening of gastric cancer(GC)in China.AIM To investigate the clinical application of OCEUS in evaluating the preoperative T staging of gastric cancer.METHODS OCEUS was performed before the operation,and standard ultrasound images were retained.The depth of infiltration of GC(T-stage)was evaluated according to the American Joint Committee on Cancer 8th edition of the tumor-nodemetastasis staging criteria.Finally,with postoperative pathological staging as the gold standard reference,the sensitivity,specificity,negative predictive value,positive predictive value,and diagnostic value of OCEUS T staging were evaluated.RESULTS OCEUS achieved diagnostic accuracy rates of 76.6%(T1a),69.6%(T1b),62.7%(T2),60.8%(T3),88.0%(T4a),and 88.7%(T4b),with an average of 75.5%.Ultrasonic T staging sensitivity exceeded 62%,aside from T1b at 40.3%,while specificity was over 91%,except for T3 with 83.5%.The Youden index was above 60%,with T1b and T2 being exceptions.OCEUS T staging corresponded closely with pathology in T4b(kappa>0.75)and moderately in T1a,T1b,T2,T3,and T4a(kappa 0.40-0.75),registering a concordance rate exceeding 84%.CONCLUSION OCEUS was effective,reliable,and accurate in diagnosing the preoperative T staging of GC.As a noninvasive diagnostic technique,OCEUS merits clinical popularization.展开更多
Objective After traumatic injury in pregnant women,providing timely and appropriate management for high-risk patients is crucial for both pregnant women and fetuses.This study aimed to identify risk factors that predi...Objective After traumatic injury in pregnant women,providing timely and appropriate management for high-risk patients is crucial for both pregnant women and fetuses.This study aimed to identify risk factors that predict adverse pregnancy outcomes after traumatic injury.Methods A retrospective cohort study including 317 pregnant patients who experienced trauma was conducted.The collected data included general demographics,injury mechanisms and adverse pregnancy outcomes.Patients were divided into two subgroups based on the absence or presence of trauma-related adverse pregnancy outcomes.Univariate and multivariate logistic regressions were conducted to estimate the associations between clinical variables and adverse pregnancy outcomes.Results A total of 41(12.93%)patients experienced adverse pregnancy outcomes within the first 24 h post-trauma.This study revealed that age>35 years(OR=14.995,95%CI:5.024–44.755,P<0.001),third trimester trauma(OR=3.878,95%CI:1.343–11.204,P=0.012),abdominal pain(OR=3.032,95%CI:1.221–7.527,P=0.017),vaginal bleeding(OR=3.226,95%CI:1.093–9.523,P=0.034),positive scan in focused assessment with sonography for trauma(FAST)positive(OR=8.496,95%CI:2.825–25.555,P<0.001),9≤injury severity score(ISS)<16(OR=3.039,95%CI:1.046–8.835,P=0.041)and ISS≥16(OR=5.553,95%CI:1.387–22.225,P=0.015)increased the probability of posttraumatic adverse pregnancy outcomes.Maternal age,gestational age at delivery,vaginal bleeding and positive FAST results were risk factors for abnormal delivery.Conclusion Advanced maternal age,third trimester,and positive FAST results should alert multidisciplinary trauma teams to closely monitor patients to prevent adverse pregnancy outcomes.展开更多
Objective: To investigate the effects and mechanisms of p38 signaling pathway in pentagastrin-regulated cell proliferation of colorectal carcinoma cell line HT-29. Methods: HT-29 cell line of colorectal carcinoma was ...Objective: To investigate the effects and mechanisms of p38 signaling pathway in pentagastrin-regulated cell proliferation of colorectal carcinoma cell line HT-29. Methods: HT-29 cell line of colorectal carcinoma was in vitro incubated and divided into the control group, pentagastrin group, proglumide group, and pentagastrin + proglumide group. MTT reduction assay was performed to detect the proliferation status of HT-29 cell line and determine the optimal dosage of pentagastrin and proglumide. Annexin V-fluorescein isothiocyanate flow cytometry was used to detect the proliferation index (PI) and apoptosis rate (AR) of HT-29 cells. Reverse transcriptase polymerase chain reaction was performed to detect the mRNA expression of the pentagastrin receptor/cholecystokinin-B receptor (CCK-BR) and p38. The protein and phosphorylation levels of p38 were estimated by western blotting. Results: RT-PCR detection showed that CCK-BR mRNA was expressed in the HT-29 cell line. Pentagatrin improved HT-29 cell proliferation in dosage of 6.25 - 100 mg/L, and the optimal dosage of pentagastrin was 25.0 mg/L. Proglumide had no significant effect on the proliferation of HT-29 cells, but significantly inhibited the proliferation of HT-29 cells stimulated by pentagastrin when the dosage of proglumide was 8.0 - 128.0 mg/L, and the optimal dosage was 32.0 mg/L. The AR in the pentagastrin group was significantly lower than that in the control group and in the pentagastrin + proglumide group. The PI in the pentagastrin group was significantly higher than that in the control group and in the pentagastrin + proglumide group. P38 phosphorylation level in the pentagastrin group was significantly lower than that in the control group, and in the pentagastrin + proglumide group. There were no significant differences in the mRNA and protein expression of p38 in the control, pentagastrin, proglumide and pentagastrin + proglumide groups. Conclusion: Pentagastrin can improve proliferation of the CRC cell line HT-29 and inhibit apoptosis via the p38 signal transduction pathway. This mechanism may be associated with suppressed p38 protein phosphorylation level due to inhibition of proglumide, a gastrin receptor antagonist.展开更多
The synchronizability of multiplex undirected regular networks has been intensively studied based on the study of the synchronizability of single-layer networks. However, most real networks are characterized by some d...The synchronizability of multiplex undirected regular networks has been intensively studied based on the study of the synchronizability of single-layer networks. However, most real networks are characterized by some degree of directionality. So multiplex directed networks can better explain the synchronizability phenomenon. Here, based on the theory of master stability function (MSF), we study the eigenvalue spectrum and synchronizability of double-layer inter-layer directed ring networks (Networks-A) and double-layer intra-layer directed ring networks (Networks-B). The eigenvalue spectrum of the supra-Laplacian matrix of the networks is rigorously derived, and the influence of the networks structure parameters on the network’s synchronizability is analyzed. The correctness of the theory is further verified by numerical simulation analysis. Finally, the synchronizability of four kinds of double-layer ring networks with different coupling modes, namely, Networks-A, Networks-B, Networks-C (double-layer undirected ring networks), and Networks-D (double-layer undirected inter-layer random-added-edge ring networks), is compared and the results can provide guidance for constructing the optimal synchronization network.展开更多
In this study, we, for the first time, tried to apply IC50 values (inhibitory concentration estimated to affect the endpoint in question by 50%) in the MTT colorimetric assay to investigate the cytotoxic effects of hi...In this study, we, for the first time, tried to apply IC50 values (inhibitory concentration estimated to affect the endpoint in question by 50%) in the MTT colorimetric assay to investigate the cytotoxic effects of highly absorbent foam dressings based on silver zirconium phosphate, a newly nano-based matrix. Our results showed that silver released from dressings based on silver zirconium phosphate attributed mainly to highly cytotoxic to L929 cells cultured with MEM containing 10% fetal bovine serum. In addition, we have also compared the IC<sub>50</sub> values among different dilutions of AgNO<sub>3</sub> solution, silver based dressing extracts and material reference control (ZDEC) extracts using the optimized MTT assay, along with characterizing the silver content in the dressing extracts using atomic absorption spectroscopy. Results have shown that the IC<sub>50</sub> values of AgNO<sub>50</sub> solution, silver based dressing extracts and ZDEC extracts are 3.5 μg/mL, 3.8 μg/mL and 8.4%, respectively. And there exist some good agreements between qualitative and quantitative evaluation method as well. In conclusion, our study has led to the view that the IC<sub>50</sub> value is a promising quantitative index for screening cytotoxicity with regard to silver based dressings.展开更多
基金financially supported by the Scientific Research Projects of the Education Department of Zhejiang Province(Grant No.Y202454744)the Ningbo Public Welfare Science and Technology Project(Grant Nos.2023S007 and 2023S165)the Key Research and Development Program of Zhejiang(Grant No.2023C03183).
文摘As an essential part of the urban infrastructure,underground utility tunnels have a long service life,complex structural performance evolution and dynamic changes both inside and outside the tunnel.These combined factors result in a wide variety of disaster risks during the operation and maintenance phase,which make risk management and control particularly challenging.This work first reviews three common representative disaster factors during the operation and maintenance period:settlement,earthquakes,and explosions.It summarizes the causes of disasters,key technologies,and research methods.Then,it delves into the research on the intelligent operation and maintenance architecture for utility tunnels.Additionally,it explores the data challenges,monitoring technologies,and management platform architectures faced during the operation and maintenance process.This work provides new research perspectives for the long-term,healthy,and sustainable development of utility tunnels,which serve as the underground arteries of cities.
基金supported by the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2023R01002)the National Natural Science Foundation of China(82271629,82301790)。
文摘Aging and regeneration represent complex biological phenomena that have long captivated the scientific community.To fully comprehend these processes,it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions.Conventional omics methodologies,such as genomics and transcriptomics,have been instrumental in identifying critical molecular facets of aging and regeneration.However,these methods are somewhat limited,constrained by their spatial resolution and their lack of capacity to dynamically represent tissue alterations.The advent of emerging spatiotemporal multi-omics approaches,encompassing transcriptomics,proteomics,metabolomics,and epigenomics,furnishes comprehensive insights into these intricate molecular dynamics.These sophisticated techniques facilitate accurate delineation of molecular patterns across an array of cells,tissues,and organs,thereby offering an in-depth understanding of the fundamental mechanisms at play.This review meticulously examines the significance of spatiotemporal multi-omics in the realms of aging and regeneration research.It underscores how these methodologies augment our comprehension of molecular dynamics,cellular interactions,and signaling pathways.Initially,the review delineates the foundational principles underpinning these methods,followed by an evaluation of their recent applications within the field.The review ultimately concludes by addressing the prevailing challenges and projecting future advancements in the field.Indubitably,spatiotemporal multi-omics are instrumental in deciphering the complexities inherent in aging and regeneration,thus charting a course toward potential therapeutic innovations.
基金supported by the National Natural Science Foundation of China(No.52101274)the Natural Science Foundation of Shandong Province(Nos.ZR2020QE011 and ZR2022ME089)+2 种基金Youth Top Talent Foundation of Yantai University(No.2219008)Graduate Innovation Foundation of Yantai University(No.GIFYTU2240)College Student Innovation and Entrepreneurship Training Program Project(No.202311066088).
文摘The high operating temperatures and slow kinetics limit the application of MgH_(2)-based hydrogen storage materials.Here,a composite of Ni_(3)ZnC_(0.7)/carbon nanotubes loaded onto a melamine sponge-derived carbon(MS)skeleton is prepared and loaded onto MgH_(2).During dehydrogenation,Ni_(3)ZnC_(0.7)reacts with MgH_(2)and in situ changes to Mg_(2)Ni/Zn.The transformation of Mg_(2)Ni/Mg_(2)NiH_(4) serves as a“hydrogen pump”,providing diffusion channels for hydrogen atoms and molecules to promote the de-/hydrogenation processes.Moreover,Zn/MgZn_(2) provides the catalytic sites for the transformation of Mg/MgH_(2).The length of the Mg-H bond is elongated from 1.72 to 1.995Å,and the dissociation energy barrier of MgH_(2)is reduced from 1.55 to 0.49 eV.As a result,MgH_(2)with 2.5 wt%MS@Ni_(3)ZnC_(0.7)can absorb 5.18 wt%H_(2)at 423 K within 200 s,and its initial dehydrogenation temperature is reduced to 585 K.After 20 cycles,the dehydrogenation capacity retention is determined to be 94.6%.This work demonstrates an efficient non-stoichiometric metal carbide catalyst for MgH_(2).
基金supported by the National Natural Science Foundation of China(11804023)the Natural Science Foundation of Tianjin(18JCQNJC02700)。
文摘Recently, two dimensional In Se attracts great attentions as potential hydrogen production photocatalysts.Here, comprehensive investigations on the hydrogen evolution reaction activity of In Se monolayer with3 d transition metal doping and biaxial strain were performed based on the density functional theory.Transition metal dopants significantly increase the bonding strength between H and Se, and then adjust the hydrogen adsorption free energy to 0.02 e V by Zn doping. The enhanced hydrogen evolution reaction activity results from less electron occupying H 1 s-Se 4 pzanti-bonding states, which is well correlated with the pzband center level. Importantly, the universal scalling law was proposed to descript the evolution of hydrogen adsorption free energy including both doping and strain effects. Moreover, with appropriate band alignment, optical absorption, and carriers separation ability, Zn doped In Se monolayer is considered as a promising candidate of visible-light photocatalyst for hydrogen production.
基金partially supported by the National Research Foundation,Prime Minister’s Office,Singapore under its Marine Science Research and Development program(Award No.MSRDPP28)the Ministry of Education,Singapore under Tier 2 program(Award No.MOE2018-T2-1-163)。
文摘In this work,the thermodynamic,mechanical properties and electronic behaviors of D022-TiAl3 doped with W and 15 groupⅣM(M=C,Ge,Pb,Si and Sn)dopants are investigated by DFT methods.We established that ductility can be improved using multi-doping approach and revealed the mechanisms behind such brittle-to-ductile transition.In addition,it is found that there is linearity between changes in Young’s modulus and tensile/compre s sive strain ratio.An alternate insight into brittle-to-ductile transition during ductile mode cutting of brittle materials is proposed.
文摘Background: Myoepithelial carcinoma is a rare form of parotid gland cancer characterized by its specific histopathological features involving malignant epithelial and myoepithelial cells. The occurrence of myoepithelial carcinoma after recurrent parotid gland cancer is particularly rare. Methods: This study describes a patient with myoepithelial carcinoma associated with recurrent parotid gland cancer involving the epiglottis. It includes presentation, recurrence, diagnosis, surgery, and follow-up. A search of PubMed, Enhances, and UK Biobank yielded data on pathologic features and treatment approaches for myoepithelial carcinoma outcomes: The patient originally diagnosed with parotid carcinoma underwent parotidectomy. Recurrence revealed myoepithelial carcinoma, squamous cell carcinoma and spindle cell components. Total parotidectomy followed by partial laryngectomy, reconstruction of laryngeal function, tracheotomy, adjuvant radiotherapy and chemotherapy. The patient was followed up with no evidence of disease. Conclusions: This case is an example of a rare local recurrence in the form of myoepithelial carcinoma after an initial diagnosis of parotid gland cancer. Surgical resection and chemoradiotherapy show promising results in the treatment of this difficult disease.
基金supported by the Key Research and Development Program of Zhejiang(Grant No.2023C03183)the Natural Science Foundation of Zhejiang Province(Grant No.LY23E080005)Science and Technology Project of Zhejiang Provincial Department of Transport(Grant No.202225).
文摘With the advent of the big data era and the rise of Industrial Revolution 4.0,digital twins(DTs)have gained sig-nificant attention in various industries.DTs offer the opportunity to combine the physical and digital worlds and aid the digital transformation of the civil engineering industry.In this paper,605 documents obtained from the search werefirst analysed using CiteSpace for literature visualisation,and an author co-occurrence network,a keyword co-occurrence network,and a keyword clustering set were obtained.Next,through a literature review of 86 papers,this paper summarises the current status of DT application in civil engineering based on a review of the origins,concepts,and implementation techniques of DTs,and it introduces the application of DTs in the full project lifecycle.This study shows that DTs have great potential to address many of the challenges faced by civil engineering.In this regard,the paper also presents some thoughts on the future directions of DT research.
基金supported by the National Natural Science Foundation of China(82202352,82271629)the Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University(ZNLH202202)+1 种基金the China Postdoctoral Science Foundation Funded Project(2023M732711)the Wenzhou Medical University grant(QTJ23004)。
文摘Background:Most bone-related injuries to grassroots troops are caused by training or accidental injuries.To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroots troops,it is imperative to develop new strategies and scafolds to promote bone regeneration.Methods:In this study,a porous piezoelectric hydrogel bone scafold was fabricated by incorporating polydopamine(PDA)-modified ceramic hydroxyapatite(PDA-hydroxyapatite,PHA)and PDA-modified barium titanate(PDABaTiO_(3),PBT)nanoparticles into a chitosan/gelatin(Cs/Gel)matrix.The physical and chemical properties of the Cs/Gel/PHA scafold with 0–10 wt%PBT were analyzed.Cell and animal experiments were performed to characterize the immunomodulatory,angiogenic,and osteogenic capabilities of the piezoelectric hydrogel scafold in vitro and in vivo.Results:The incorporation of BaTiO_(3) into the scafold improved its mechanical properties and increased self-generated electricity.Due to their endogenous piezoelectric stimulation and bioactive constituents,the prepared Cs/Gel/PHA/PBT hydrogels exhibited cytocompatibility as well as immunomodulatory,angiogenic,and osteogenic capabilities;they not only effectively induced macrophage polarization to M2 phenotype but also promoted the migration,tube formation,and angiogenic differentiation of human umbilical vein endothelial cells(HUVECs)and facilitated the migration,osteodifferentiation,and extracellular matrix(ECM)mineralization of MC3T3-E1 cells.The in vivo evaluations showed that these piezoelectric hydrogels with versatile capabilities significantly facilitated new bone formation in a rat large-sized cranial injury model.The underlying molecular mechanism can be partly attributed to the immunomodulation of the Cs/Gel/PHA/PBT hydrogels as shown via transcriptome sequencing analysis,and the PI3K/Akt signaling axis plays an important role in regulating macrophage M2 polarization.Conclusion:The piezoelectric Cs/Gel/PHA/PBT hydrogels developed here with favorable immunomodulation,angiogenesis,and osteogenesis functions may be used as a substitute in periosteum injuries,thereby offering the novel strategy of applying piezoelectric stimulation in bone tissue engineering for the enhancement of combat efectiveness in grassroots troops.
基金financially supported by Natural Science Foundation of Chongqing,China(cstc2021jcyj-msxm X0898)Natural Science Foundation of Jilin Province(20210101080JC)National Natural Science Foundation of China(51803012,51573023)
文摘Solar steam generation is a promising water purification technology due to its low-cost and environmentally friendly applications in water purification and desalination.However,hydrophilic or hydrophobic materials alone are insufficient in achieving necessary characteristics for constructing highquality solar steam generators with good comprehensive properties.Herein,novel hydrophile/hydrophobe amphipathic Janus nanofibers aerogel is designed and used as a host material for preparing solar steam generators.The product consists of an internal cubic aerogel and an external layer of photothermal materials.The internal aerogel is composed of electrospun amphipathic Janus nanofibers.Owing to the unique composition and structure,the prepared solar steam generator integrates the features of high water evaporation rate(2.944 kg m^(-2)h^(-1)under 1 kW m^(-2)irradiation),selffloating,salt-resisting,and fast performance recovery after flipping.Moreover,the product also exhibits excellent properties on desalination and removal of organic pollutants.Compared with traditional hydrophilic aerogel host material,the amphipathic Janus nanofibers aerogel brings much higher water evaporation rate and salt resistance.
基金Supported by the National Key R&D Program of China(No.2022YFC3106005)the Shandong Provincial Natural Science Foundation(No.ZR2021MD122)+1 种基金the MNR Key Laboratory of Eco-Environmental Science and Technology,China(No.MEEST-2023-04)the Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation(No.201708)。
文摘In 2022,Yellow Sea green tide caused by Ulva prolifera reached a historic minimum and the coastal areas of Shandong Peninsula were less affected.However,the largest amount of seaweed biomass has been washed ashore on Lianyungang and Rizhao coasts since 2015.We studied the development pattern of Yellow Sea green tide in 2022,and analyzed the key environmental factors on the growth and drifting,then discussed the possible reasons that resulted in the massive stranding of green tide biomass in Lianyungang and Rizhao.Results show under the combined influence of the east to southeast winds and currents with shoreward anomalies,green tide drifted to the coastal waters between Shandong and Jiangsu provinces and the distribution areas located westward compared with previous years(2008–2021).Floating U.prolifera rafts from the coastal waters of Binhai and Sheyang drifted continuously into the coastal waters of Lianyungang and Rizhao,providing important supplements for Yellow Sea green tide.Because green tide in 2022 distributed close to the coastal waters,the abundant nutrients might support their continuous high growth rate.In addition,the amount of rainfall around Shandong Peninsula from late June to early July were significantly higher than in previous years,which might promote the development of green tide to some extent.
文摘BACKGROUND Oral contrast-enhanced ultrasound(OCEUS)is widely used in the noninvasive diagnosis and screening of gastric cancer(GC)in China.AIM To investigate the clinical application of OCEUS in evaluating the preoperative T staging of gastric cancer.METHODS OCEUS was performed before the operation,and standard ultrasound images were retained.The depth of infiltration of GC(T-stage)was evaluated according to the American Joint Committee on Cancer 8th edition of the tumor-nodemetastasis staging criteria.Finally,with postoperative pathological staging as the gold standard reference,the sensitivity,specificity,negative predictive value,positive predictive value,and diagnostic value of OCEUS T staging were evaluated.RESULTS OCEUS achieved diagnostic accuracy rates of 76.6%(T1a),69.6%(T1b),62.7%(T2),60.8%(T3),88.0%(T4a),and 88.7%(T4b),with an average of 75.5%.Ultrasonic T staging sensitivity exceeded 62%,aside from T1b at 40.3%,while specificity was over 91%,except for T3 with 83.5%.The Youden index was above 60%,with T1b and T2 being exceptions.OCEUS T staging corresponded closely with pathology in T4b(kappa>0.75)and moderately in T1a,T1b,T2,T3,and T4a(kappa 0.40-0.75),registering a concordance rate exceeding 84%.CONCLUSION OCEUS was effective,reliable,and accurate in diagnosing the preoperative T staging of GC.As a noninvasive diagnostic technique,OCEUS merits clinical popularization.
文摘Objective After traumatic injury in pregnant women,providing timely and appropriate management for high-risk patients is crucial for both pregnant women and fetuses.This study aimed to identify risk factors that predict adverse pregnancy outcomes after traumatic injury.Methods A retrospective cohort study including 317 pregnant patients who experienced trauma was conducted.The collected data included general demographics,injury mechanisms and adverse pregnancy outcomes.Patients were divided into two subgroups based on the absence or presence of trauma-related adverse pregnancy outcomes.Univariate and multivariate logistic regressions were conducted to estimate the associations between clinical variables and adverse pregnancy outcomes.Results A total of 41(12.93%)patients experienced adverse pregnancy outcomes within the first 24 h post-trauma.This study revealed that age>35 years(OR=14.995,95%CI:5.024–44.755,P<0.001),third trimester trauma(OR=3.878,95%CI:1.343–11.204,P=0.012),abdominal pain(OR=3.032,95%CI:1.221–7.527,P=0.017),vaginal bleeding(OR=3.226,95%CI:1.093–9.523,P=0.034),positive scan in focused assessment with sonography for trauma(FAST)positive(OR=8.496,95%CI:2.825–25.555,P<0.001),9≤injury severity score(ISS)<16(OR=3.039,95%CI:1.046–8.835,P=0.041)and ISS≥16(OR=5.553,95%CI:1.387–22.225,P=0.015)increased the probability of posttraumatic adverse pregnancy outcomes.Maternal age,gestational age at delivery,vaginal bleeding and positive FAST results were risk factors for abnormal delivery.Conclusion Advanced maternal age,third trimester,and positive FAST results should alert multidisciplinary trauma teams to closely monitor patients to prevent adverse pregnancy outcomes.
文摘Objective: To investigate the effects and mechanisms of p38 signaling pathway in pentagastrin-regulated cell proliferation of colorectal carcinoma cell line HT-29. Methods: HT-29 cell line of colorectal carcinoma was in vitro incubated and divided into the control group, pentagastrin group, proglumide group, and pentagastrin + proglumide group. MTT reduction assay was performed to detect the proliferation status of HT-29 cell line and determine the optimal dosage of pentagastrin and proglumide. Annexin V-fluorescein isothiocyanate flow cytometry was used to detect the proliferation index (PI) and apoptosis rate (AR) of HT-29 cells. Reverse transcriptase polymerase chain reaction was performed to detect the mRNA expression of the pentagastrin receptor/cholecystokinin-B receptor (CCK-BR) and p38. The protein and phosphorylation levels of p38 were estimated by western blotting. Results: RT-PCR detection showed that CCK-BR mRNA was expressed in the HT-29 cell line. Pentagatrin improved HT-29 cell proliferation in dosage of 6.25 - 100 mg/L, and the optimal dosage of pentagastrin was 25.0 mg/L. Proglumide had no significant effect on the proliferation of HT-29 cells, but significantly inhibited the proliferation of HT-29 cells stimulated by pentagastrin when the dosage of proglumide was 8.0 - 128.0 mg/L, and the optimal dosage was 32.0 mg/L. The AR in the pentagastrin group was significantly lower than that in the control group and in the pentagastrin + proglumide group. The PI in the pentagastrin group was significantly higher than that in the control group and in the pentagastrin + proglumide group. P38 phosphorylation level in the pentagastrin group was significantly lower than that in the control group, and in the pentagastrin + proglumide group. There were no significant differences in the mRNA and protein expression of p38 in the control, pentagastrin, proglumide and pentagastrin + proglumide groups. Conclusion: Pentagastrin can improve proliferation of the CRC cell line HT-29 and inhibit apoptosis via the p38 signal transduction pathway. This mechanism may be associated with suppressed p38 protein phosphorylation level due to inhibition of proglumide, a gastrin receptor antagonist.
文摘The synchronizability of multiplex undirected regular networks has been intensively studied based on the study of the synchronizability of single-layer networks. However, most real networks are characterized by some degree of directionality. So multiplex directed networks can better explain the synchronizability phenomenon. Here, based on the theory of master stability function (MSF), we study the eigenvalue spectrum and synchronizability of double-layer inter-layer directed ring networks (Networks-A) and double-layer intra-layer directed ring networks (Networks-B). The eigenvalue spectrum of the supra-Laplacian matrix of the networks is rigorously derived, and the influence of the networks structure parameters on the network’s synchronizability is analyzed. The correctness of the theory is further verified by numerical simulation analysis. Finally, the synchronizability of four kinds of double-layer ring networks with different coupling modes, namely, Networks-A, Networks-B, Networks-C (double-layer undirected ring networks), and Networks-D (double-layer undirected inter-layer random-added-edge ring networks), is compared and the results can provide guidance for constructing the optimal synchronization network.
文摘In this study, we, for the first time, tried to apply IC50 values (inhibitory concentration estimated to affect the endpoint in question by 50%) in the MTT colorimetric assay to investigate the cytotoxic effects of highly absorbent foam dressings based on silver zirconium phosphate, a newly nano-based matrix. Our results showed that silver released from dressings based on silver zirconium phosphate attributed mainly to highly cytotoxic to L929 cells cultured with MEM containing 10% fetal bovine serum. In addition, we have also compared the IC<sub>50</sub> values among different dilutions of AgNO<sub>3</sub> solution, silver based dressing extracts and material reference control (ZDEC) extracts using the optimized MTT assay, along with characterizing the silver content in the dressing extracts using atomic absorption spectroscopy. Results have shown that the IC<sub>50</sub> values of AgNO<sub>50</sub> solution, silver based dressing extracts and ZDEC extracts are 3.5 μg/mL, 3.8 μg/mL and 8.4%, respectively. And there exist some good agreements between qualitative and quantitative evaluation method as well. In conclusion, our study has led to the view that the IC<sub>50</sub> value is a promising quantitative index for screening cytotoxicity with regard to silver based dressings.