Recently, two dimensional In Se attracts great attentions as potential hydrogen production photocatalysts.Here, comprehensive investigations on the hydrogen evolution reaction activity of In Se monolayer with3 d trans...Recently, two dimensional In Se attracts great attentions as potential hydrogen production photocatalysts.Here, comprehensive investigations on the hydrogen evolution reaction activity of In Se monolayer with3 d transition metal doping and biaxial strain were performed based on the density functional theory.Transition metal dopants significantly increase the bonding strength between H and Se, and then adjust the hydrogen adsorption free energy to 0.02 e V by Zn doping. The enhanced hydrogen evolution reaction activity results from less electron occupying H 1 s-Se 4 pzanti-bonding states, which is well correlated with the pzband center level. Importantly, the universal scalling law was proposed to descript the evolution of hydrogen adsorption free energy including both doping and strain effects. Moreover, with appropriate band alignment, optical absorption, and carriers separation ability, Zn doped In Se monolayer is considered as a promising candidate of visible-light photocatalyst for hydrogen production.展开更多
In this work,the thermodynamic,mechanical properties and electronic behaviors of D022-TiAl3 doped with W and 15 groupⅣM(M=C,Ge,Pb,Si and Sn)dopants are investigated by DFT methods.We established that ductility can be...In this work,the thermodynamic,mechanical properties and electronic behaviors of D022-TiAl3 doped with W and 15 groupⅣM(M=C,Ge,Pb,Si and Sn)dopants are investigated by DFT methods.We established that ductility can be improved using multi-doping approach and revealed the mechanisms behind such brittle-to-ductile transition.In addition,it is found that there is linearity between changes in Young’s modulus and tensile/compre s sive strain ratio.An alternate insight into brittle-to-ductile transition during ductile mode cutting of brittle materials is proposed.展开更多
γ neuromodulation has emerged as a promising strategy for addressing neurological and psychiatric disorders,particularly in regulating executive and cognitive functions.This review explores the latest neuromodulation...γ neuromodulation has emerged as a promising strategy for addressing neurological and psychiatric disorders,particularly in regulating executive and cognitive functions.This review explores the latest neuromodulation techniques,focusing on the critical role of γ oscillations in various brain disorders.Direct γ neuromodulation induces γ -frequency oscillations to synchronize disrupted brain networks,while indirect methods influence γ oscillations by modulating cortical excitability.We investigate how monitoring dynamic features of γ oscillations allows for detailed evaluations of neuromodulation effectiveness.By targeting γ oscillatory patterns and restoring healthy cross-frequency coupling,interventions may alleviate cognitive and behavioral symptoms linked to disrupted communication.This review examines clinical applications of γ neuromodulations,including enhancing cognitive function through 40 Hz multisensory stimulation in Alzheimer’s disease,improving motor function in Parkinson’s disease,controlling seizures in epilepsy,and modulating emotional dysfunctions in depression.Additionally,these neuromodulation strategies aim to regulate excitatory-inhibitory imbalances and restore γ synchrony across neurological and psychiatric disorders.The review highlights the potential of γ oscillations as biomarkers to boost restorative results in clinical applications of neuromodulation.Future studies might focus on integrating multimodal personalized protocols,artificial intelligence(AI)driven frameworks for neural decoding,and global multicenter collaborations to standardize and scale precision treatments across diverse disorders.展开更多
As an essential part of the urban infrastructure,underground utility tunnels have a long service life,complex structural performance evolution and dynamic changes both inside and outside the tunnel.These combined fact...As an essential part of the urban infrastructure,underground utility tunnels have a long service life,complex structural performance evolution and dynamic changes both inside and outside the tunnel.These combined factors result in a wide variety of disaster risks during the operation and maintenance phase,which make risk management and control particularly challenging.This work first reviews three common representative disaster factors during the operation and maintenance period:settlement,earthquakes,and explosions.It summarizes the causes of disasters,key technologies,and research methods.Then,it delves into the research on the intelligent operation and maintenance architecture for utility tunnels.Additionally,it explores the data challenges,monitoring technologies,and management platform architectures faced during the operation and maintenance process.This work provides new research perspectives for the long-term,healthy,and sustainable development of utility tunnels,which serve as the underground arteries of cities.展开更多
Aging and regeneration represent complex biological phenomena that have long captivated the scientific community.To fully comprehend these processes,it is essential to investigate molecular dynamics through a lens tha...Aging and regeneration represent complex biological phenomena that have long captivated the scientific community.To fully comprehend these processes,it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions.Conventional omics methodologies,such as genomics and transcriptomics,have been instrumental in identifying critical molecular facets of aging and regeneration.However,these methods are somewhat limited,constrained by their spatial resolution and their lack of capacity to dynamically represent tissue alterations.The advent of emerging spatiotemporal multi-omics approaches,encompassing transcriptomics,proteomics,metabolomics,and epigenomics,furnishes comprehensive insights into these intricate molecular dynamics.These sophisticated techniques facilitate accurate delineation of molecular patterns across an array of cells,tissues,and organs,thereby offering an in-depth understanding of the fundamental mechanisms at play.This review meticulously examines the significance of spatiotemporal multi-omics in the realms of aging and regeneration research.It underscores how these methodologies augment our comprehension of molecular dynamics,cellular interactions,and signaling pathways.Initially,the review delineates the foundational principles underpinning these methods,followed by an evaluation of their recent applications within the field.The review ultimately concludes by addressing the prevailing challenges and projecting future advancements in the field.Indubitably,spatiotemporal multi-omics are instrumental in deciphering the complexities inherent in aging and regeneration,thus charting a course toward potential therapeutic innovations.展开更多
The high operating temperatures and slow kinetics limit the application of MgH_(2)-based hydrogen storage materials.Here,a composite of Ni_(3)ZnC_(0.7)/carbon nanotubes loaded onto a melamine sponge-derived carbon(MS)...The high operating temperatures and slow kinetics limit the application of MgH_(2)-based hydrogen storage materials.Here,a composite of Ni_(3)ZnC_(0.7)/carbon nanotubes loaded onto a melamine sponge-derived carbon(MS)skeleton is prepared and loaded onto MgH_(2).During dehydrogenation,Ni_(3)ZnC_(0.7)reacts with MgH_(2)and in situ changes to Mg_(2)Ni/Zn.The transformation of Mg_(2)Ni/Mg_(2)NiH_(4) serves as a“hydrogen pump”,providing diffusion channels for hydrogen atoms and molecules to promote the de-/hydrogenation processes.Moreover,Zn/MgZn_(2) provides the catalytic sites for the transformation of Mg/MgH_(2).The length of the Mg-H bond is elongated from 1.72 to 1.995Å,and the dissociation energy barrier of MgH_(2)is reduced from 1.55 to 0.49 eV.As a result,MgH_(2)with 2.5 wt%MS@Ni_(3)ZnC_(0.7)can absorb 5.18 wt%H_(2)at 423 K within 200 s,and its initial dehydrogenation temperature is reduced to 585 K.After 20 cycles,the dehydrogenation capacity retention is determined to be 94.6%.This work demonstrates an efficient non-stoichiometric metal carbide catalyst for MgH_(2).展开更多
Data-driven techniques are reshaping blast furnace iron-making process(BFIP)modeling,but their“black-box”nature often obscures interpretability and accuracy.To overcome these limitations,our mechanism and data co-dr...Data-driven techniques are reshaping blast furnace iron-making process(BFIP)modeling,but their“black-box”nature often obscures interpretability and accuracy.To overcome these limitations,our mechanism and data co-driven strategy(MDCDS)enhances model transparency and molten iron quality(MIQ)prediction.By zoning the furnace and applying mechanism-based features for material and thermal trends,coupled with a novel stationary broad feature learning system(StaBFLS),interference caused by nonstationary process characteristics are mitigated and the intrinsic information embedded in BFIP is mined.Subsequently,by integrating stationary feature representation with mechanism features,our temporal matching broad learning system(TMBLS)aligns process and quality variables using MIQ as the target.This integration allows us to establish process monitoring statistics using both mechanism and data-driven features,as well as detect modeling deviations.Validated against real-world BFIP data,our MDCDS model demonstrates consistent process alignment,robust feature extraction,and improved MIQ modeling—Yielding better fault detection.Additionally,we offer detailed insights into the validation process,including parameter baselining and optimization.展开更多
To effectively enhance the catalytic activity of NiS,NiS particles confined into carbon fibers were prepared by electrostatic spinning followed pyrolyzation and NiS particles decorating was performed by further hydrot...To effectively enhance the catalytic activity of NiS,NiS particles confined into carbon fibers were prepared by electrostatic spinning followed pyrolyzation and NiS particles decorating was performed by further hydrothermal loading.The decorated NiS exhibits particle(NiS@PAN-NiS)and needle-like(NiS@PAN-NiS^(*))morphologies.After adding the catalysts into MgH_(2),the synthesized MgH_(2)-5 wt%NiS@PAN-NiS composite can absorb 2.6 wt%hydrogen at 353 K and release 5.0 wt%hydrogen within 1 h at 573 K.The initial hydrogen desorption temperature was reduced to 539 K.The activation energies for hydrogen absorption/desorption were greatly reduced to 66.76 and 89.95 kJ mol^(-1),respectively.The method of confining by electrospinning and particle decoration by hydrothermal loading reduce NiS particle agglomeration.The Mg_(2)Ni/Mg_(2)NiH_(4)hydrogen pump formed by reaction between NiS and MgH_(2)effectively enhanced hydrogen absorption and desorption kinetics.The formed MgS also improved the catalytic activity on the transformation of Mg and MgH_(2).Moreover,the carbon fibers should influence the contact between in situ formed MgS and Mg_(2)Ni,providing more catalytic sites and hydrogen diffusion pathways.The construction of NiS/carbon fibers confined NiS composite by carbon fibers derived from pyrolyzation as medium provides considerable way for designing NiS-based catalysts to enhance the hydrogen storage performances of MgH_(2).展开更多
Objective: To investigate the effects and mechanisms of p38 signaling pathway in pentagastrin-regulated cell proliferation of colorectal carcinoma cell line HT-29. Methods: HT-29 cell line of colorectal carcinoma was ...Objective: To investigate the effects and mechanisms of p38 signaling pathway in pentagastrin-regulated cell proliferation of colorectal carcinoma cell line HT-29. Methods: HT-29 cell line of colorectal carcinoma was in vitro incubated and divided into the control group, pentagastrin group, proglumide group, and pentagastrin + proglumide group. MTT reduction assay was performed to detect the proliferation status of HT-29 cell line and determine the optimal dosage of pentagastrin and proglumide. Annexin V-fluorescein isothiocyanate flow cytometry was used to detect the proliferation index (PI) and apoptosis rate (AR) of HT-29 cells. Reverse transcriptase polymerase chain reaction was performed to detect the mRNA expression of the pentagastrin receptor/cholecystokinin-B receptor (CCK-BR) and p38. The protein and phosphorylation levels of p38 were estimated by western blotting. Results: RT-PCR detection showed that CCK-BR mRNA was expressed in the HT-29 cell line. Pentagatrin improved HT-29 cell proliferation in dosage of 6.25 - 100 mg/L, and the optimal dosage of pentagastrin was 25.0 mg/L. Proglumide had no significant effect on the proliferation of HT-29 cells, but significantly inhibited the proliferation of HT-29 cells stimulated by pentagastrin when the dosage of proglumide was 8.0 - 128.0 mg/L, and the optimal dosage was 32.0 mg/L. The AR in the pentagastrin group was significantly lower than that in the control group and in the pentagastrin + proglumide group. The PI in the pentagastrin group was significantly higher than that in the control group and in the pentagastrin + proglumide group. P38 phosphorylation level in the pentagastrin group was significantly lower than that in the control group, and in the pentagastrin + proglumide group. There were no significant differences in the mRNA and protein expression of p38 in the control, pentagastrin, proglumide and pentagastrin + proglumide groups. Conclusion: Pentagastrin can improve proliferation of the CRC cell line HT-29 and inhibit apoptosis via the p38 signal transduction pathway. This mechanism may be associated with suppressed p38 protein phosphorylation level due to inhibition of proglumide, a gastrin receptor antagonist.展开更多
The synchronizability of multiplex undirected regular networks has been intensively studied based on the study of the synchronizability of single-layer networks. However, most real networks are characterized by some d...The synchronizability of multiplex undirected regular networks has been intensively studied based on the study of the synchronizability of single-layer networks. However, most real networks are characterized by some degree of directionality. So multiplex directed networks can better explain the synchronizability phenomenon. Here, based on the theory of master stability function (MSF), we study the eigenvalue spectrum and synchronizability of double-layer inter-layer directed ring networks (Networks-A) and double-layer intra-layer directed ring networks (Networks-B). The eigenvalue spectrum of the supra-Laplacian matrix of the networks is rigorously derived, and the influence of the networks structure parameters on the network’s synchronizability is analyzed. The correctness of the theory is further verified by numerical simulation analysis. Finally, the synchronizability of four kinds of double-layer ring networks with different coupling modes, namely, Networks-A, Networks-B, Networks-C (double-layer undirected ring networks), and Networks-D (double-layer undirected inter-layer random-added-edge ring networks), is compared and the results can provide guidance for constructing the optimal synchronization network.展开更多
In this study, we, for the first time, tried to apply IC50 values (inhibitory concentration estimated to affect the endpoint in question by 50%) in the MTT colorimetric assay to investigate the cytotoxic effects of hi...In this study, we, for the first time, tried to apply IC50 values (inhibitory concentration estimated to affect the endpoint in question by 50%) in the MTT colorimetric assay to investigate the cytotoxic effects of highly absorbent foam dressings based on silver zirconium phosphate, a newly nano-based matrix. Our results showed that silver released from dressings based on silver zirconium phosphate attributed mainly to highly cytotoxic to L929 cells cultured with MEM containing 10% fetal bovine serum. In addition, we have also compared the IC<sub>50</sub> values among different dilutions of AgNO<sub>3</sub> solution, silver based dressing extracts and material reference control (ZDEC) extracts using the optimized MTT assay, along with characterizing the silver content in the dressing extracts using atomic absorption spectroscopy. Results have shown that the IC<sub>50</sub> values of AgNO<sub>50</sub> solution, silver based dressing extracts and ZDEC extracts are 3.5 μg/mL, 3.8 μg/mL and 8.4%, respectively. And there exist some good agreements between qualitative and quantitative evaluation method as well. In conclusion, our study has led to the view that the IC<sub>50</sub> value is a promising quantitative index for screening cytotoxicity with regard to silver based dressings.展开更多
Background: Myoepithelial carcinoma is a rare form of parotid gland cancer characterized by its specific histopathological features involving malignant epithelial and myoepithelial cells. The occurrence of myoepitheli...Background: Myoepithelial carcinoma is a rare form of parotid gland cancer characterized by its specific histopathological features involving malignant epithelial and myoepithelial cells. The occurrence of myoepithelial carcinoma after recurrent parotid gland cancer is particularly rare. Methods: This study describes a patient with myoepithelial carcinoma associated with recurrent parotid gland cancer involving the epiglottis. It includes presentation, recurrence, diagnosis, surgery, and follow-up. A search of PubMed, Enhances, and UK Biobank yielded data on pathologic features and treatment approaches for myoepithelial carcinoma outcomes: The patient originally diagnosed with parotid carcinoma underwent parotidectomy. Recurrence revealed myoepithelial carcinoma, squamous cell carcinoma and spindle cell components. Total parotidectomy followed by partial laryngectomy, reconstruction of laryngeal function, tracheotomy, adjuvant radiotherapy and chemotherapy. The patient was followed up with no evidence of disease. Conclusions: This case is an example of a rare local recurrence in the form of myoepithelial carcinoma after an initial diagnosis of parotid gland cancer. Surgical resection and chemoradiotherapy show promising results in the treatment of this difficult disease.展开更多
The fibrous root system in cereals comprises primarily adventitious roots (ARs), which play important roles in nutrient and water uptake. Current knowledge regarding the molecular mechanism underlying AR development...The fibrous root system in cereals comprises primarily adventitious roots (ARs), which play important roles in nutrient and water uptake. Current knowledge regarding the molecular mechanism underlying AR development is still limited. We report here the isolation of four rice (Oryza sativa L.) mutants, from different genetic backgrounds, all of which were defective in AR formation. These mutants exhibited reduced numbers of lateral roots (LRs) and partial loss of gravitropism. The mutants also displayed enhanced sensitivity to N-l-naphthylphthalamic acid, an inhibitor of polar auxin transport (PAT), indicating that the mutations affected auxin transport. Positional cloning using one of the four mutants revealed that it was caused by loss-of-function of a guanine nucleotide exchange factor for ADP- ribosylation factor (OsGNOM1). RT-PCR and analysis of promoter::GUS transgenic plants showed that OsGNOM1 is expressed in AR primordia, vascular tissues, LRs, root tips, leaves, anthers and lemma veins, with a distribution pattern similar to that of auxin. In addition, the expressions of OsPIN2, OsPIN5b and OsPIN9 were altered in the mutants. Taken together, these findings indicate that OsGNOM1 affects the formation of ARs through regulating PAT.展开更多
Metformin,a first-line drug for type-2 diabetes,has been shown to improve locomotor recovery after spinal cord injury.However,there are studies reporting no beneficial effect.Recently,we found that high dose of metfor...Metformin,a first-line drug for type-2 diabetes,has been shown to improve locomotor recovery after spinal cord injury.However,there are studies reporting no beneficial effect.Recently,we found that high dose of metformin(200 mg/kg,intraperitoneal)and acute phase administration(immediately after injury)led to increased mortality and limited locomotor function recovery.Consequently,we used a lower dose(100 mg/kg,i.p.)metformin in mice,and compared the effect of immediate administration after spinal cord injury(acute phase)with that of administration at 3 days post-injury(subacute phase).Our data showed that metformin treatment starting at the subacute phase significantly improved mouse locomotor function evaluated by Basso Mouse Scale(BMS)scoring.Immunohistochemical studies also revealed significant inhibitions of microglia/macrophage activation and astrogliosis at the lesion site.Furthermore,metformin treatment at the subacute phase reduced neutrophil infiltration.These changes were in parallel with the increased survival rate of spinal neurons in animals treated with metformin.These findings suggest that low-dose metformin treatment for subacute spinal cord injury can effectively improve the functional recovery possibly through anti-inflammation and neuroprotection.This study was approved by the Institute Animal Care and Use Committee at the University of Texas Medical Branch(approval No.1008041C)in 2010.展开更多
This paper presents a concise summary of recent studies on the long-term variations of haze in NorthChina and on the environmental and dynamic conditions for severe persistent haze events. Resultsindicate that haze da...This paper presents a concise summary of recent studies on the long-term variations of haze in NorthChina and on the environmental and dynamic conditions for severe persistent haze events. Resultsindicate that haze days have an obviously rising trend over the past 50 years in North China. Theoccurrence frequency of persistent haze events has a similar rising trend due to the continuous riseof winter temperatures, decrease of surface wind speeds, and aggravation of atmospheric stability. InNorth China, when severe persistent haze events occur, anomalous southwesterly winds prevail in thelower troposphere, providing sufficient moisture for the formation of haze. Moreover, North China ismainly controlled by a deep downdraft in the mid-lower troposphere, which contributes to reducing thethickness of the planetary boundary layer, obviously reducing the atmospheric capacity for pollutants.This atmospheric circulation and sinking motion provide favorable conditions for the formation andmaintenance of haze in North China.展开更多
基金supported by the National Natural Science Foundation of China(11804023)the Natural Science Foundation of Tianjin(18JCQNJC02700)。
文摘Recently, two dimensional In Se attracts great attentions as potential hydrogen production photocatalysts.Here, comprehensive investigations on the hydrogen evolution reaction activity of In Se monolayer with3 d transition metal doping and biaxial strain were performed based on the density functional theory.Transition metal dopants significantly increase the bonding strength between H and Se, and then adjust the hydrogen adsorption free energy to 0.02 e V by Zn doping. The enhanced hydrogen evolution reaction activity results from less electron occupying H 1 s-Se 4 pzanti-bonding states, which is well correlated with the pzband center level. Importantly, the universal scalling law was proposed to descript the evolution of hydrogen adsorption free energy including both doping and strain effects. Moreover, with appropriate band alignment, optical absorption, and carriers separation ability, Zn doped In Se monolayer is considered as a promising candidate of visible-light photocatalyst for hydrogen production.
基金partially supported by the National Research Foundation,Prime Minister’s Office,Singapore under its Marine Science Research and Development program(Award No.MSRDPP28)the Ministry of Education,Singapore under Tier 2 program(Award No.MOE2018-T2-1-163)。
文摘In this work,the thermodynamic,mechanical properties and electronic behaviors of D022-TiAl3 doped with W and 15 groupⅣM(M=C,Ge,Pb,Si and Sn)dopants are investigated by DFT methods.We established that ductility can be improved using multi-doping approach and revealed the mechanisms behind such brittle-to-ductile transition.In addition,it is found that there is linearity between changes in Young’s modulus and tensile/compre s sive strain ratio.An alternate insight into brittle-to-ductile transition during ductile mode cutting of brittle materials is proposed.
基金supported by the National Natural Science Foundation of China(82401829)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2023R01002).
文摘γ neuromodulation has emerged as a promising strategy for addressing neurological and psychiatric disorders,particularly in regulating executive and cognitive functions.This review explores the latest neuromodulation techniques,focusing on the critical role of γ oscillations in various brain disorders.Direct γ neuromodulation induces γ -frequency oscillations to synchronize disrupted brain networks,while indirect methods influence γ oscillations by modulating cortical excitability.We investigate how monitoring dynamic features of γ oscillations allows for detailed evaluations of neuromodulation effectiveness.By targeting γ oscillatory patterns and restoring healthy cross-frequency coupling,interventions may alleviate cognitive and behavioral symptoms linked to disrupted communication.This review examines clinical applications of γ neuromodulations,including enhancing cognitive function through 40 Hz multisensory stimulation in Alzheimer’s disease,improving motor function in Parkinson’s disease,controlling seizures in epilepsy,and modulating emotional dysfunctions in depression.Additionally,these neuromodulation strategies aim to regulate excitatory-inhibitory imbalances and restore γ synchrony across neurological and psychiatric disorders.The review highlights the potential of γ oscillations as biomarkers to boost restorative results in clinical applications of neuromodulation.Future studies might focus on integrating multimodal personalized protocols,artificial intelligence(AI)driven frameworks for neural decoding,and global multicenter collaborations to standardize and scale precision treatments across diverse disorders.
基金financially supported by the Scientific Research Projects of the Education Department of Zhejiang Province(Grant No.Y202454744)the Ningbo Public Welfare Science and Technology Project(Grant Nos.2023S007 and 2023S165)the Key Research and Development Program of Zhejiang(Grant No.2023C03183).
文摘As an essential part of the urban infrastructure,underground utility tunnels have a long service life,complex structural performance evolution and dynamic changes both inside and outside the tunnel.These combined factors result in a wide variety of disaster risks during the operation and maintenance phase,which make risk management and control particularly challenging.This work first reviews three common representative disaster factors during the operation and maintenance period:settlement,earthquakes,and explosions.It summarizes the causes of disasters,key technologies,and research methods.Then,it delves into the research on the intelligent operation and maintenance architecture for utility tunnels.Additionally,it explores the data challenges,monitoring technologies,and management platform architectures faced during the operation and maintenance process.This work provides new research perspectives for the long-term,healthy,and sustainable development of utility tunnels,which serve as the underground arteries of cities.
基金supported by the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2023R01002)the National Natural Science Foundation of China(82271629,82301790)。
文摘Aging and regeneration represent complex biological phenomena that have long captivated the scientific community.To fully comprehend these processes,it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions.Conventional omics methodologies,such as genomics and transcriptomics,have been instrumental in identifying critical molecular facets of aging and regeneration.However,these methods are somewhat limited,constrained by their spatial resolution and their lack of capacity to dynamically represent tissue alterations.The advent of emerging spatiotemporal multi-omics approaches,encompassing transcriptomics,proteomics,metabolomics,and epigenomics,furnishes comprehensive insights into these intricate molecular dynamics.These sophisticated techniques facilitate accurate delineation of molecular patterns across an array of cells,tissues,and organs,thereby offering an in-depth understanding of the fundamental mechanisms at play.This review meticulously examines the significance of spatiotemporal multi-omics in the realms of aging and regeneration research.It underscores how these methodologies augment our comprehension of molecular dynamics,cellular interactions,and signaling pathways.Initially,the review delineates the foundational principles underpinning these methods,followed by an evaluation of their recent applications within the field.The review ultimately concludes by addressing the prevailing challenges and projecting future advancements in the field.Indubitably,spatiotemporal multi-omics are instrumental in deciphering the complexities inherent in aging and regeneration,thus charting a course toward potential therapeutic innovations.
基金supported by the National Natural Science Foundation of China(No.52101274)the Natural Science Foundation of Shandong Province(Nos.ZR2020QE011 and ZR2022ME089)+2 种基金Youth Top Talent Foundation of Yantai University(No.2219008)Graduate Innovation Foundation of Yantai University(No.GIFYTU2240)College Student Innovation and Entrepreneurship Training Program Project(No.202311066088).
文摘The high operating temperatures and slow kinetics limit the application of MgH_(2)-based hydrogen storage materials.Here,a composite of Ni_(3)ZnC_(0.7)/carbon nanotubes loaded onto a melamine sponge-derived carbon(MS)skeleton is prepared and loaded onto MgH_(2).During dehydrogenation,Ni_(3)ZnC_(0.7)reacts with MgH_(2)and in situ changes to Mg_(2)Ni/Zn.The transformation of Mg_(2)Ni/Mg_(2)NiH_(4) serves as a“hydrogen pump”,providing diffusion channels for hydrogen atoms and molecules to promote the de-/hydrogenation processes.Moreover,Zn/MgZn_(2) provides the catalytic sites for the transformation of Mg/MgH_(2).The length of the Mg-H bond is elongated from 1.72 to 1.995Å,and the dissociation energy barrier of MgH_(2)is reduced from 1.55 to 0.49 eV.As a result,MgH_(2)with 2.5 wt%MS@Ni_(3)ZnC_(0.7)can absorb 5.18 wt%H_(2)at 423 K within 200 s,and its initial dehydrogenation temperature is reduced to 585 K.After 20 cycles,the dehydrogenation capacity retention is determined to be 94.6%.This work demonstrates an efficient non-stoichiometric metal carbide catalyst for MgH_(2).
基金supported in part by the National Natural Science Foundation of China(61933015,61703371,62273030)the Central University Basic Research Fund of China(K20200002)(for NGICS Platform,Zhejiang University)the Social Development Project of Zhejiang Provincial Public Technology Research(LGF19F030004,LGG21F030015).
文摘Data-driven techniques are reshaping blast furnace iron-making process(BFIP)modeling,but their“black-box”nature often obscures interpretability and accuracy.To overcome these limitations,our mechanism and data co-driven strategy(MDCDS)enhances model transparency and molten iron quality(MIQ)prediction.By zoning the furnace and applying mechanism-based features for material and thermal trends,coupled with a novel stationary broad feature learning system(StaBFLS),interference caused by nonstationary process characteristics are mitigated and the intrinsic information embedded in BFIP is mined.Subsequently,by integrating stationary feature representation with mechanism features,our temporal matching broad learning system(TMBLS)aligns process and quality variables using MIQ as the target.This integration allows us to establish process monitoring statistics using both mechanism and data-driven features,as well as detect modeling deviations.Validated against real-world BFIP data,our MDCDS model demonstrates consistent process alignment,robust feature extraction,and improved MIQ modeling—Yielding better fault detection.Additionally,we offer detailed insights into the validation process,including parameter baselining and optimization.
基金financially supported by the National Natural Science Foundation of China(Nos.52101274 and 52472131)the Natural Science Foundation of Shandong Province(Nos.ZR2020QE011 and ZR2022ME089)+6 种基金Yantai Basic Research Project(No.2024JCYJ097)the Key Research and Development Projects of Shandong Province(No.2024TSGC0402)the Youth Top Talent Foundation of Yantai University(No.2219008)the Graduate Innovation Foundation of Yantai University(No.GIFYTU2240)the Natural Science Foundation of Qinghai Province for Distinguished Young Scholars(No.2025-ZJ-966J)the Talent Youth Project of Chinese Academy of Sciences(No.E410GC03)the CollegeStudent Innovation and Entrepreneurship Training Program Project(No.202311066088)
文摘To effectively enhance the catalytic activity of NiS,NiS particles confined into carbon fibers were prepared by electrostatic spinning followed pyrolyzation and NiS particles decorating was performed by further hydrothermal loading.The decorated NiS exhibits particle(NiS@PAN-NiS)and needle-like(NiS@PAN-NiS^(*))morphologies.After adding the catalysts into MgH_(2),the synthesized MgH_(2)-5 wt%NiS@PAN-NiS composite can absorb 2.6 wt%hydrogen at 353 K and release 5.0 wt%hydrogen within 1 h at 573 K.The initial hydrogen desorption temperature was reduced to 539 K.The activation energies for hydrogen absorption/desorption were greatly reduced to 66.76 and 89.95 kJ mol^(-1),respectively.The method of confining by electrospinning and particle decoration by hydrothermal loading reduce NiS particle agglomeration.The Mg_(2)Ni/Mg_(2)NiH_(4)hydrogen pump formed by reaction between NiS and MgH_(2)effectively enhanced hydrogen absorption and desorption kinetics.The formed MgS also improved the catalytic activity on the transformation of Mg and MgH_(2).Moreover,the carbon fibers should influence the contact between in situ formed MgS and Mg_(2)Ni,providing more catalytic sites and hydrogen diffusion pathways.The construction of NiS/carbon fibers confined NiS composite by carbon fibers derived from pyrolyzation as medium provides considerable way for designing NiS-based catalysts to enhance the hydrogen storage performances of MgH_(2).
文摘Objective: To investigate the effects and mechanisms of p38 signaling pathway in pentagastrin-regulated cell proliferation of colorectal carcinoma cell line HT-29. Methods: HT-29 cell line of colorectal carcinoma was in vitro incubated and divided into the control group, pentagastrin group, proglumide group, and pentagastrin + proglumide group. MTT reduction assay was performed to detect the proliferation status of HT-29 cell line and determine the optimal dosage of pentagastrin and proglumide. Annexin V-fluorescein isothiocyanate flow cytometry was used to detect the proliferation index (PI) and apoptosis rate (AR) of HT-29 cells. Reverse transcriptase polymerase chain reaction was performed to detect the mRNA expression of the pentagastrin receptor/cholecystokinin-B receptor (CCK-BR) and p38. The protein and phosphorylation levels of p38 were estimated by western blotting. Results: RT-PCR detection showed that CCK-BR mRNA was expressed in the HT-29 cell line. Pentagatrin improved HT-29 cell proliferation in dosage of 6.25 - 100 mg/L, and the optimal dosage of pentagastrin was 25.0 mg/L. Proglumide had no significant effect on the proliferation of HT-29 cells, but significantly inhibited the proliferation of HT-29 cells stimulated by pentagastrin when the dosage of proglumide was 8.0 - 128.0 mg/L, and the optimal dosage was 32.0 mg/L. The AR in the pentagastrin group was significantly lower than that in the control group and in the pentagastrin + proglumide group. The PI in the pentagastrin group was significantly higher than that in the control group and in the pentagastrin + proglumide group. P38 phosphorylation level in the pentagastrin group was significantly lower than that in the control group, and in the pentagastrin + proglumide group. There were no significant differences in the mRNA and protein expression of p38 in the control, pentagastrin, proglumide and pentagastrin + proglumide groups. Conclusion: Pentagastrin can improve proliferation of the CRC cell line HT-29 and inhibit apoptosis via the p38 signal transduction pathway. This mechanism may be associated with suppressed p38 protein phosphorylation level due to inhibition of proglumide, a gastrin receptor antagonist.
文摘The synchronizability of multiplex undirected regular networks has been intensively studied based on the study of the synchronizability of single-layer networks. However, most real networks are characterized by some degree of directionality. So multiplex directed networks can better explain the synchronizability phenomenon. Here, based on the theory of master stability function (MSF), we study the eigenvalue spectrum and synchronizability of double-layer inter-layer directed ring networks (Networks-A) and double-layer intra-layer directed ring networks (Networks-B). The eigenvalue spectrum of the supra-Laplacian matrix of the networks is rigorously derived, and the influence of the networks structure parameters on the network’s synchronizability is analyzed. The correctness of the theory is further verified by numerical simulation analysis. Finally, the synchronizability of four kinds of double-layer ring networks with different coupling modes, namely, Networks-A, Networks-B, Networks-C (double-layer undirected ring networks), and Networks-D (double-layer undirected inter-layer random-added-edge ring networks), is compared and the results can provide guidance for constructing the optimal synchronization network.
文摘In this study, we, for the first time, tried to apply IC50 values (inhibitory concentration estimated to affect the endpoint in question by 50%) in the MTT colorimetric assay to investigate the cytotoxic effects of highly absorbent foam dressings based on silver zirconium phosphate, a newly nano-based matrix. Our results showed that silver released from dressings based on silver zirconium phosphate attributed mainly to highly cytotoxic to L929 cells cultured with MEM containing 10% fetal bovine serum. In addition, we have also compared the IC<sub>50</sub> values among different dilutions of AgNO<sub>3</sub> solution, silver based dressing extracts and material reference control (ZDEC) extracts using the optimized MTT assay, along with characterizing the silver content in the dressing extracts using atomic absorption spectroscopy. Results have shown that the IC<sub>50</sub> values of AgNO<sub>50</sub> solution, silver based dressing extracts and ZDEC extracts are 3.5 μg/mL, 3.8 μg/mL and 8.4%, respectively. And there exist some good agreements between qualitative and quantitative evaluation method as well. In conclusion, our study has led to the view that the IC<sub>50</sub> value is a promising quantitative index for screening cytotoxicity with regard to silver based dressings.
文摘Background: Myoepithelial carcinoma is a rare form of parotid gland cancer characterized by its specific histopathological features involving malignant epithelial and myoepithelial cells. The occurrence of myoepithelial carcinoma after recurrent parotid gland cancer is particularly rare. Methods: This study describes a patient with myoepithelial carcinoma associated with recurrent parotid gland cancer involving the epiglottis. It includes presentation, recurrence, diagnosis, surgery, and follow-up. A search of PubMed, Enhances, and UK Biobank yielded data on pathologic features and treatment approaches for myoepithelial carcinoma outcomes: The patient originally diagnosed with parotid carcinoma underwent parotidectomy. Recurrence revealed myoepithelial carcinoma, squamous cell carcinoma and spindle cell components. Total parotidectomy followed by partial laryngectomy, reconstruction of laryngeal function, tracheotomy, adjuvant radiotherapy and chemotherapy. The patient was followed up with no evidence of disease. Conclusions: This case is an example of a rare local recurrence in the form of myoepithelial carcinoma after an initial diagnosis of parotid gland cancer. Surgical resection and chemoradiotherapy show promising results in the treatment of this difficult disease.
基金Acknowledgments This work was supported by the Key Basic Research Special Foundation of China (2005CB20900), the National High Technology Research and Development Program (2007AA021403, 2006AA10Z 175), the National Natural Science Foundation of China (30471118 and 30770191) and the Specialized Research Fund for the Doctoral Program of Higher Education (20070335081).
文摘The fibrous root system in cereals comprises primarily adventitious roots (ARs), which play important roles in nutrient and water uptake. Current knowledge regarding the molecular mechanism underlying AR development is still limited. We report here the isolation of four rice (Oryza sativa L.) mutants, from different genetic backgrounds, all of which were defective in AR formation. These mutants exhibited reduced numbers of lateral roots (LRs) and partial loss of gravitropism. The mutants also displayed enhanced sensitivity to N-l-naphthylphthalamic acid, an inhibitor of polar auxin transport (PAT), indicating that the mutations affected auxin transport. Positional cloning using one of the four mutants revealed that it was caused by loss-of-function of a guanine nucleotide exchange factor for ADP- ribosylation factor (OsGNOM1). RT-PCR and analysis of promoter::GUS transgenic plants showed that OsGNOM1 is expressed in AR primordia, vascular tissues, LRs, root tips, leaves, anthers and lemma veins, with a distribution pattern similar to that of auxin. In addition, the expressions of OsPIN2, OsPIN5b and OsPIN9 were altered in the mutants. Taken together, these findings indicate that OsGNOM1 affects the formation of ARs through regulating PAT.
基金supported by a grant from The Institute for Rehabilitation and Research Foundation,No.MC018-112(to PW)John S.Dunn Foundation,No.18168(to PW)+2 种基金the National Natural Science foundation of China,Nos.81620108018(to SQF),81930070(to SQF),82072439(to GZN)Tianjin Key Research and Development Plan,Key Projects For Science and Technology Support of China,No.19YFZCSY00660(to SQF)the National Key R&D Program of China,No.2019YFA0112100(to SQF).
文摘Metformin,a first-line drug for type-2 diabetes,has been shown to improve locomotor recovery after spinal cord injury.However,there are studies reporting no beneficial effect.Recently,we found that high dose of metformin(200 mg/kg,intraperitoneal)and acute phase administration(immediately after injury)led to increased mortality and limited locomotor function recovery.Consequently,we used a lower dose(100 mg/kg,i.p.)metformin in mice,and compared the effect of immediate administration after spinal cord injury(acute phase)with that of administration at 3 days post-injury(subacute phase).Our data showed that metformin treatment starting at the subacute phase significantly improved mouse locomotor function evaluated by Basso Mouse Scale(BMS)scoring.Immunohistochemical studies also revealed significant inhibitions of microglia/macrophage activation and astrogliosis at the lesion site.Furthermore,metformin treatment at the subacute phase reduced neutrophil infiltration.These changes were in parallel with the increased survival rate of spinal neurons in animals treated with metformin.These findings suggest that low-dose metformin treatment for subacute spinal cord injury can effectively improve the functional recovery possibly through anti-inflammation and neuroprotection.This study was approved by the Institute Animal Care and Use Committee at the University of Texas Medical Branch(approval No.1008041C)in 2010.
文摘This paper presents a concise summary of recent studies on the long-term variations of haze in NorthChina and on the environmental and dynamic conditions for severe persistent haze events. Resultsindicate that haze days have an obviously rising trend over the past 50 years in North China. Theoccurrence frequency of persistent haze events has a similar rising trend due to the continuous riseof winter temperatures, decrease of surface wind speeds, and aggravation of atmospheric stability. InNorth China, when severe persistent haze events occur, anomalous southwesterly winds prevail in thelower troposphere, providing sufficient moisture for the formation of haze. Moreover, North China ismainly controlled by a deep downdraft in the mid-lower troposphere, which contributes to reducing thethickness of the planetary boundary layer, obviously reducing the atmospheric capacity for pollutants.This atmospheric circulation and sinking motion provide favorable conditions for the formation andmaintenance of haze in North China.