With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterati...With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.展开更多
Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)...Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)have shown potential for brain injury repair in central nervous system diseases.In this study,we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism.Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits,enhanced blood-brain barrier integrity,and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage.Additionally,hiPSC-NSC-Exos decreased immune cell infiltration,activated astrocytes,and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1,macrophage inflammatory protein-1α,and tumor necrosis factor-αpost-intracerebral hemorrhage,thereby improving the inflammatory microenvironment.RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion,thereby improving blood-brain barrier integrity.Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects.In summary,our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity,in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.展开更多
We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repet...We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.In this study,we first used an HT22 scratch injury model to mimic traumatic brain injury,then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p.We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress.Furthermore,luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α,while an IRE1αfunctional salvage experiment confirmed that miR-124-3p targeted IRE1αand reduced its expression,thereby inhibiting endoplasmic reticulum stress in injured neurons.Finally,we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced.These findings suggest that,after repetitive mild traumatic brain injury,miR-124-3 can be transferred from microglia-derived exosomes to injured neurons,where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress.Therefore,microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.展开更多
Similar to that of other enteroviruses, the replication of enterovirus 71(EV71) occurs on rearranged membranous structures called replication organelles(ROs). Phosphatidylinositol 4-kinase Ⅲ(PI4KB), which is required...Similar to that of other enteroviruses, the replication of enterovirus 71(EV71) occurs on rearranged membranous structures called replication organelles(ROs). Phosphatidylinositol 4-kinase Ⅲ(PI4KB), which is required by enteroviruses for RO formation, yields phosphatidylinositol-4-phosphate(PI4P) on ROs. PI4P then binds and induces conformational changes in the RNA-dependent RNA polymerase(Rd Rp) to modulate Rd Rp activity. Here, we targeted 3D polymerase, the core enzyme of EV71 ROs, and found that the host factor Annexin A2(ANXA2) can interact with 3 D polymerase and promote the replication of EV71. Then, an experiment showed that the annexin domain of ANXA2, which possesses membranebinding capacity, mediates the interaction of ANXA2 with EV71 3 D polymerase. Further research showed that ANXA2 is localized on ROs and interacts with PI4KB. Overexpression of ANXA2 stimulated the formation of PI4P, and the level of PI4P was decreased in ANXA2-knockout cells. Furthermore, ANXA2, PI4KB, and 3D were shown to be localized to the viral RNA replication site, where they form a higher-order protein complex, and the presence of ANXA2 promoted the PI4 KB-3D interaction. Altogether, our data provide new insight into the role of ANXA2 in facilitating formation of the EV71 RNA replication complex.展开更多
Selecting an ideal molecular format from diverse structures is a major challenge in developing a bispecific antibody(BsAb).To choose an ideal format of anti-CD3 x anti-transferrin receptor(TfR)bispecific antibodies fo...Selecting an ideal molecular format from diverse structures is a major challenge in developing a bispecific antibody(BsAb).To choose an ideal format of anti-CD3 x anti-transferrin receptor(TfR)bispecific antibodies for clinical application,we constructed TfR bispecific T-cell engager(BiTE)in two extensively applied formats,including single-chain tandem singlechain variable fragments(scFvs)and double-chain diabodies,and evaluated their functional characterizations in vitro.Results demonstrated that TfR-BiTE in both formats directed potent killing of TfR+HepG2 cells.However,compared to two・chain diabodies,scFvs were more efficient in antigen binding and TfR target killing.Furthermore,different domain orders in scFvs would also be evaluated because single-TfR-CD3-His was preferable to single-CD3-TfR-His in immunotherapeutic strategies.Thus,the single-chain tandem TfR-CD3 format was favored for further investigation in cancer therapy.展开更多
In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the co...In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the composites was analyzed by scanning electron microscopy(SEM)and energy-dispersive X-ray spectrome-try(EDS).The results show that the addition of sisal fibers improves the impact resistance of cement-based composite materials.Compared with ordinary cement-based composites(OCCs),the SFRCCs demonstrate higher post-peak strength,ductility,and energy absorption capacity with higher fiber content.Moreover,the SFRCCs are strain rate sensitive materials,and their peak stress,ultimate strain,and energy integrals all increase with increasing strain rate.From the perspective of fracture failure characteristics,the failure of OCCs is dominated by the brittle failure of crystal cleavage.In contrast,the failure mode of the SFRCCs changes to microscale matrix cracks,multi-scale pull-out interface debonding of fibers(fine filaments and bundles),and mechanical interlock.This research provides an experimental basis for the engineering application of high-performance and green cement-based composites.展开更多
Objective Fibroblast activation protein(FAP)has been widely studied and exploited for its clinical applications.One of the difficulties in interpreting reports of FAP-targeted theranostics is due to the lack of accura...Objective Fibroblast activation protein(FAP)has been widely studied and exploited for its clinical applications.One of the difficulties in interpreting reports of FAP-targeted theranostics is due to the lack of accurate controls,making the results less specific and less confirmative.This study aimed to establish a pair of cell lines,in which one highly expresses FAP(HT1080-hFAP)and the other has no detectable FAP(HT1080-vec)as control,to accurately evaluate the specificity of the FAP-targeted theranostics in vitro and in vivo.Methods The cell lines of the experimental group(HT1080-hFAP)and no-load group(HT1080-vec)were obtained by molecular construction of the recombinant plasmid pIRES-hFAP.The expression of hFAP in HT1080 cells was detected by PCR,Western blotting and flow cytometry.CCK-8,Matrigel transwell invasion assay,scratch test,flow cytometry and immunofluorescence were used to verify the physiological function of FAP.The activities of human dipeptidyl peptidase(DPP)and human endopeptidase(EP)were detected by ELISA in HT1080-hFAP cells.PET imaging was performed in bilateral tumor-bearing nude mice models to evaluate the specificity of FAP.Results RT-PCR and Western blotting demonstrated the mRNA and protein expression of hFAP in HT1080-hFAP cells but not in HT1080-vec cells.Flow cytometry confirmed that nearly 95%of the HT1080-hFAP cells were FAP positive.The engineered hFAP on HT1080 cells had its ability to retain enzymatic activities and a variety of biological functions,including internalization,proliferation-,migration-,and invasion-promoting activities.The HT1080-hFAP xenografted tumors in nude mice bound and took up^(68)GA-FAPI-04 with superior selectivity.High image contrast and tumor-organ ratio were obtained by PET imaging.The HT1080-hFAP tumor retained the radiotracer for at least 60 min.Conclusion This pair of HT1080 cell lines was successfully established,making it feasible for accurate evaluation and visualization of therapeutic and diagnostic agents targeting the hFAP.展开更多
基金supported by the Haihe Laboratory of Cell Ecosystem Innovation Foundation,No.22HHXBSS00047(to PL)Graduate Science and Technology Innovation Project of Tianjin,No.2022BKY173(to LZ)Tianjin Municipal Science and Technology Bureau Foundation,No.20201194(to PL).
文摘With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.
基金supported by the National Natural Science Foundation of China,No.8227050826(to PL)Tianjin Science and Technology Bureau Foundation,No.20201194(to PL)Tianjin Graduate Research and Innovation Project,No.2022BKY174(to CW).
文摘Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)have shown potential for brain injury repair in central nervous system diseases.In this study,we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism.Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits,enhanced blood-brain barrier integrity,and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage.Additionally,hiPSC-NSC-Exos decreased immune cell infiltration,activated astrocytes,and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1,macrophage inflammatory protein-1α,and tumor necrosis factor-αpost-intracerebral hemorrhage,thereby improving the inflammatory microenvironment.RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion,thereby improving blood-brain barrier integrity.Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects.In summary,our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity,in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.
基金supported by the Haihe Laboratory of Cell Ecosystem Innovation Fund,No.22HHXBSS00047(to PL)the National Natural Science Foundation of China,Nos.82072166(to PL),82071394(to XG)+4 种基金Science and Technology Planning Project of Tianjin,No.20YFZCSY00030(to PL)Science and Technology Project of Tianjin Municipal Health Commission,No.TJWJ2021QN005(to XG)Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-006ATianjin Municipal Education Commission Scientific Research Program Project,No.2020KJ164(to JZ)China Postdoctoral Science Foundation,No.2022M712392(to ZY).
文摘We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.In this study,we first used an HT22 scratch injury model to mimic traumatic brain injury,then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p.We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress.Furthermore,luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α,while an IRE1αfunctional salvage experiment confirmed that miR-124-3p targeted IRE1αand reduced its expression,thereby inhibiting endoplasmic reticulum stress in injured neurons.Finally,we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced.These findings suggest that,after repetitive mild traumatic brain injury,miR-124-3 can be transferred from microglia-derived exosomes to injured neurons,where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress.Therefore,microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.
基金This study was supported by the National Science Foundation of China(81971976,81772236)Major Project of Technology Innovation Program of Hubei Province(2018ACA123)。
文摘Similar to that of other enteroviruses, the replication of enterovirus 71(EV71) occurs on rearranged membranous structures called replication organelles(ROs). Phosphatidylinositol 4-kinase Ⅲ(PI4KB), which is required by enteroviruses for RO formation, yields phosphatidylinositol-4-phosphate(PI4P) on ROs. PI4P then binds and induces conformational changes in the RNA-dependent RNA polymerase(Rd Rp) to modulate Rd Rp activity. Here, we targeted 3D polymerase, the core enzyme of EV71 ROs, and found that the host factor Annexin A2(ANXA2) can interact with 3 D polymerase and promote the replication of EV71. Then, an experiment showed that the annexin domain of ANXA2, which possesses membranebinding capacity, mediates the interaction of ANXA2 with EV71 3 D polymerase. Further research showed that ANXA2 is localized on ROs and interacts with PI4KB. Overexpression of ANXA2 stimulated the formation of PI4P, and the level of PI4P was decreased in ANXA2-knockout cells. Furthermore, ANXA2, PI4KB, and 3D were shown to be localized to the viral RNA replication site, where they form a higher-order protein complex, and the presence of ANXA2 promoted the PI4 KB-3D interaction. Altogether, our data provide new insight into the role of ANXA2 in facilitating formation of the EV71 RNA replication complex.
基金National Natural Science Foundation of China(No.31570937 and No.81871391)Natural Science Foundation of Hubei Province of China(No.2017CFB707)+1 种基金the Fundamental Research Funds for the Central Universities of China(No.HUST:2018KFYYXJJ086)Graduates'Innovation Foundation of Huazhong University of Science and Technology(No.5003510001).
文摘Selecting an ideal molecular format from diverse structures is a major challenge in developing a bispecific antibody(BsAb).To choose an ideal format of anti-CD3 x anti-transferrin receptor(TfR)bispecific antibodies for clinical application,we constructed TfR bispecific T-cell engager(BiTE)in two extensively applied formats,including single-chain tandem singlechain variable fragments(scFvs)and double-chain diabodies,and evaluated their functional characterizations in vitro.Results demonstrated that TfR-BiTE in both formats directed potent killing of TfR+HepG2 cells.However,compared to two・chain diabodies,scFvs were more efficient in antigen binding and TfR target killing.Furthermore,different domain orders in scFvs would also be evaluated because single-TfR-CD3-His was preferable to single-CD3-TfR-His in immunotherapeutic strategies.Thus,the single-chain tandem TfR-CD3 format was favored for further investigation in cancer therapy.
基金supported within the framework of the Basic Research Project of the Yunnan Province-Young Program(No.2019FD097)Agricultural Joint Special Project of the Yunnan Province-General Program(No.202101BD070001-118).
文摘In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the composites was analyzed by scanning electron microscopy(SEM)and energy-dispersive X-ray spectrome-try(EDS).The results show that the addition of sisal fibers improves the impact resistance of cement-based composite materials.Compared with ordinary cement-based composites(OCCs),the SFRCCs demonstrate higher post-peak strength,ductility,and energy absorption capacity with higher fiber content.Moreover,the SFRCCs are strain rate sensitive materials,and their peak stress,ultimate strain,and energy integrals all increase with increasing strain rate.From the perspective of fracture failure characteristics,the failure of OCCs is dominated by the brittle failure of crystal cleavage.In contrast,the failure mode of the SFRCCs changes to microscale matrix cracks,multi-scale pull-out interface debonding of fibers(fine filaments and bundles),and mechanical interlock.This research provides an experimental basis for the engineering application of high-performance and green cement-based composites.
基金This work was supported by the National Natural Science Foundation of China(No.82171986).
文摘Objective Fibroblast activation protein(FAP)has been widely studied and exploited for its clinical applications.One of the difficulties in interpreting reports of FAP-targeted theranostics is due to the lack of accurate controls,making the results less specific and less confirmative.This study aimed to establish a pair of cell lines,in which one highly expresses FAP(HT1080-hFAP)and the other has no detectable FAP(HT1080-vec)as control,to accurately evaluate the specificity of the FAP-targeted theranostics in vitro and in vivo.Methods The cell lines of the experimental group(HT1080-hFAP)and no-load group(HT1080-vec)were obtained by molecular construction of the recombinant plasmid pIRES-hFAP.The expression of hFAP in HT1080 cells was detected by PCR,Western blotting and flow cytometry.CCK-8,Matrigel transwell invasion assay,scratch test,flow cytometry and immunofluorescence were used to verify the physiological function of FAP.The activities of human dipeptidyl peptidase(DPP)and human endopeptidase(EP)were detected by ELISA in HT1080-hFAP cells.PET imaging was performed in bilateral tumor-bearing nude mice models to evaluate the specificity of FAP.Results RT-PCR and Western blotting demonstrated the mRNA and protein expression of hFAP in HT1080-hFAP cells but not in HT1080-vec cells.Flow cytometry confirmed that nearly 95%of the HT1080-hFAP cells were FAP positive.The engineered hFAP on HT1080 cells had its ability to retain enzymatic activities and a variety of biological functions,including internalization,proliferation-,migration-,and invasion-promoting activities.The HT1080-hFAP xenografted tumors in nude mice bound and took up^(68)GA-FAPI-04 with superior selectivity.High image contrast and tumor-organ ratio were obtained by PET imaging.The HT1080-hFAP tumor retained the radiotracer for at least 60 min.Conclusion This pair of HT1080 cell lines was successfully established,making it feasible for accurate evaluation and visualization of therapeutic and diagnostic agents targeting the hFAP.