The effect of the design parameter on the clutch engagement process of the hydro-mechanical continuously variable transmission(CVT)was investigated.First,the model of the power train was developed with the software of...The effect of the design parameter on the clutch engagement process of the hydro-mechanical continuously variable transmission(CVT)was investigated.First,the model of the power train was developed with the software of SimulationX,and the clutch shift experiment was used to validate the correctness of the model.Then,the friction coefficient function was fitted with the test data to get the friction coefficient model suitable for this paper.Finally,based on the evaluating index of the friction torque and the friction power,two groups of design parameters(oil pressure and friction coefficient)were simulated and explained the changing regulation theoretically.According to the simulation results,the high oil pressure and friction coefficient can reduce the slipping time.The large oil pressure can increase the peak torque but the effect of friction coefficient on the peak torque is not so significant.The friction power reaches the maximum value at 3.2 s,the peak value increases as the oil pressure and friction coefficient increase.The effect of the oil pressure on the clutch engagement and thermal performance is greater than the friction coefficient.展开更多
The research on the self-propelled electric tiller is vital for further improving the quality and efficiency of greenhouse rotary tillage operation,reducing the work intensity and operation risk of operators,and achie...The research on the self-propelled electric tiller is vital for further improving the quality and efficiency of greenhouse rotary tillage operation,reducing the work intensity and operation risk of operators,and achieving environmentally friendly characteristics.Most of the existing self-propelled tillers rely on manual adjustment of the tillage depth.Moreover,the consistency and stability of the tillage depth are difficult to guarantee.In this study,the automatic control method of tillage depth of a self-propelled electric tiller is investigated.A method of applying the fuzzy PID(Proportional Integral Derivative)control method to the tillage depth adjustment system of a tiller is also proposed to realize automatic control.The system uses the real-time detection of the resistance sensor and angle sensor.The controller runs the electronically controlled hydraulic system to adjust the force and position comprehensively.The fuzzy control algorithm is used in the operation error control to realize the double-parameter control of the tillage depth.The simulation and experimental verification of the system are conducted.Results show that the control system applying fuzzy PID can improve the soil breaking rate by 3%in the operation process based on reducing the stability variation of tillage depth by 24%.The control strategy can reach the set value of tillage depth quickly and accurately.It can also meet the requirement of tillage depth consistency during the operation.展开更多
基金Project(CX(19)3081)supported by the Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province,ChinaProject(BE2018127)supported by the Key Research and Development Program of Jiangsu Province,China。
文摘The effect of the design parameter on the clutch engagement process of the hydro-mechanical continuously variable transmission(CVT)was investigated.First,the model of the power train was developed with the software of SimulationX,and the clutch shift experiment was used to validate the correctness of the model.Then,the friction coefficient function was fitted with the test data to get the friction coefficient model suitable for this paper.Finally,based on the evaluating index of the friction torque and the friction power,two groups of design parameters(oil pressure and friction coefficient)were simulated and explained the changing regulation theoretically.According to the simulation results,the high oil pressure and friction coefficient can reduce the slipping time.The large oil pressure can increase the peak torque but the effect of friction coefficient on the peak torque is not so significant.The friction power reaches the maximum value at 3.2 s,the peak value increases as the oil pressure and friction coefficient increase.The effect of the oil pressure on the clutch engagement and thermal performance is greater than the friction coefficient.
基金Jiangsu Province International Cooperation Project(BZ2021022)Changzhou International Science and Technology Cooperation Project(C220220011)+1 种基金Jiangsu Province Modern Agricultural Machinery Equipment and Technology Demonstration and Promotion Project(NJ2020-01)Nanjing Agricultural University SRT Project(202110307050)。
基金the Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province(CX(22)3101)State Key Research and development program(2022YFD2001204)the Modern Agricultural Machinery Equipment and Technology Promotion Project in Jiangsu Province(NJ2021-26).
文摘The research on the self-propelled electric tiller is vital for further improving the quality and efficiency of greenhouse rotary tillage operation,reducing the work intensity and operation risk of operators,and achieving environmentally friendly characteristics.Most of the existing self-propelled tillers rely on manual adjustment of the tillage depth.Moreover,the consistency and stability of the tillage depth are difficult to guarantee.In this study,the automatic control method of tillage depth of a self-propelled electric tiller is investigated.A method of applying the fuzzy PID(Proportional Integral Derivative)control method to the tillage depth adjustment system of a tiller is also proposed to realize automatic control.The system uses the real-time detection of the resistance sensor and angle sensor.The controller runs the electronically controlled hydraulic system to adjust the force and position comprehensively.The fuzzy control algorithm is used in the operation error control to realize the double-parameter control of the tillage depth.The simulation and experimental verification of the system are conducted.Results show that the control system applying fuzzy PID can improve the soil breaking rate by 3%in the operation process based on reducing the stability variation of tillage depth by 24%.The control strategy can reach the set value of tillage depth quickly and accurately.It can also meet the requirement of tillage depth consistency during the operation.