New geochronologic data from midcontinental Laurentia demonstrate that emplacement of the 1476-1470 Ma Wolf River granitic batholith was not an isolated igneous event,but was accompanied by regional metamorphism,defor...New geochronologic data from midcontinental Laurentia demonstrate that emplacement of the 1476-1470 Ma Wolf River granitic batholith was not an isolated igneous event,but was accompanied by regional metamorphism,deformation,and sedimentation.Evidence for such metamorphism and deformation is best seen in siliciclastic sedimentary rocks of the Baraboo Interval,which were deposited closely following the 1.65-1.63 Ga Mazatzal orogeny.In Baraboo Interval strata,muscovite parallel to slatey cleavage,in hydrothermal veins,in quartzite breccia,and in metamorphosed paleosol yielded ^(40)Ar/^(39)Ar plateau ages of 1493-1465 Ma.In addition,U-Th-total Pb dating of neoblastic overgrowths on detrital monazite gave an age of 1488±20 Ma,and recrystallized hematite in folded metapelite gave a mean U/Th-He age of 1411±39 Ma.Post-Baraboo,arkosic polymictic conglomerate,which contains detrital zircon with a minimum peak age of 1493 Ma,was intruded by a 1470 Ma granite porphyry at the northeastern margin of the Wolf River batholith.This episode of magmatism,regional deformation and metamorphism,and sedimentation,which is designated herein as the Baraboo orogeny,provides a midcontinental link between the Picuris orogeny to the southwest and the Pinware orogeny to the northeast,completing the extent of early Mesoproterozoic(Calymmian)orogenesis for 5000 km along the southern margin of Laurentia.This transcontinental orogen is unique among Precambrian orogenies for its great width(-1600 km),the predominance of ferroan granites derived from partial melting of lower continental crust,and the prevalence of regional high T-P metamorphism related to advective heating by granitic magmas emplaced in the middle to upper crust.展开更多
A U-Pb-He double-dating method is applied to detrital zircons with core-rim structure from the Ganges River in order to de- termine average short and long-term exhumation rates for the Himalayas. Long-term rates are c...A U-Pb-He double-dating method is applied to detrital zircons with core-rim structure from the Ganges River in order to de- termine average short and long-term exhumation rates for the Himalayas. Long-term rates are calculated from the U/Pb ages of metamorphic rims of the grains that formed during the Himalayan orogeny and their crystallization temperatures, which are calculated from the Ti-in-zircon thermometer. Short-term rates are calculated from (U-Th)/He ages of the grains with appro- priate closure temperatures. The results show that short-term rates for the Himalayas, which range from 0.70 ± 0.09 to 2.67 ± 0.40 km/Myr and average 1.75 ± 0.59 (1δ) km/Myr, are higher and more varied than the long-term rates, which range from 0.84 ±0.16 to 1.85 ± 0.35 km/Myr and average 1.26 ±0.25 (let) km/Myr. The differences between the long-term and short-term rates can be attributed to continuous exhumation of the host rocks in different mechanisms in continental collision orogen. The U/Pb ages of 44.0 ± 3.7 to 18.3 ±0.5 Ma for the zircon rims indicate a protracted episode of -:25 Myr for regional metamorphism of the host rocks at deeper crust, whereas the (U-Th)/He ages of 42.2 ± 1.8 to 1.3 ± 0.2 Ma for the zircon grains represent a protracted period of -40 Myr for exposure of the host rocks to shallower crustal level. In particular, the oldest (U-Th)/He ages of the zircon grains are close to the oldest U/Pb ages for the rims, indicating that some parcels of the rocks that contain zircons were rapidly exhumed from deep to shallow levels in the stage of collisional orogeny. On the other hand, some parcels of the rocks may have been carried upwards by thrust faults in the post-collisional stage. The parcels could be carried upwards by the thrust faults that steepen as they near the surface, or by transient movement faults so that areas of rapid exhu- mation became areas of slow exhumation and visa versa on a time scale of a few Myr in order to maintain the continuous ex- humation. In this regard, the Ganges River must be preferentially sampling areas that are currently undergoing above average rates of uplift.展开更多
基金Detrital zircon analyses were funded in part by the USGS National Cooperative Geologic Mapping Program under award G16AC00143(2016)to EKS.Support for the Arizona LaserChron Center,where detrital zircon analyses of samples 07ES15 and 05ES15 were performed,was provided by NSFEAR 1649254.Support for monazite geochronology was partially provided by an Institute for Lake Superior Geology student research grant and NSF-EAR 0620101 to AVL.
文摘New geochronologic data from midcontinental Laurentia demonstrate that emplacement of the 1476-1470 Ma Wolf River granitic batholith was not an isolated igneous event,but was accompanied by regional metamorphism,deformation,and sedimentation.Evidence for such metamorphism and deformation is best seen in siliciclastic sedimentary rocks of the Baraboo Interval,which were deposited closely following the 1.65-1.63 Ga Mazatzal orogeny.In Baraboo Interval strata,muscovite parallel to slatey cleavage,in hydrothermal veins,in quartzite breccia,and in metamorphosed paleosol yielded ^(40)Ar/^(39)Ar plateau ages of 1493-1465 Ma.In addition,U-Th-total Pb dating of neoblastic overgrowths on detrital monazite gave an age of 1488±20 Ma,and recrystallized hematite in folded metapelite gave a mean U/Th-He age of 1411±39 Ma.Post-Baraboo,arkosic polymictic conglomerate,which contains detrital zircon with a minimum peak age of 1493 Ma,was intruded by a 1470 Ma granite porphyry at the northeastern margin of the Wolf River batholith.This episode of magmatism,regional deformation and metamorphism,and sedimentation,which is designated herein as the Baraboo orogeny,provides a midcontinental link between the Picuris orogeny to the southwest and the Pinware orogeny to the northeast,completing the extent of early Mesoproterozoic(Calymmian)orogenesis for 5000 km along the southern margin of Laurentia.This transcontinental orogen is unique among Precambrian orogenies for its great width(-1600 km),the predominance of ferroan granites derived from partial melting of lower continental crust,and the prevalence of regional high T-P metamorphism related to advective heating by granitic magmas emplaced in the middle to upper crust.
基金supported by the Australian Research Council Discovery Project(Grant No.DP 0556923)the Chinese Academy of Sciences Distinguished ProfessorshipGuangzhou Institute of Geochemistry,Chinese Academy of Sciences(Grant No.Y234041001)
文摘A U-Pb-He double-dating method is applied to detrital zircons with core-rim structure from the Ganges River in order to de- termine average short and long-term exhumation rates for the Himalayas. Long-term rates are calculated from the U/Pb ages of metamorphic rims of the grains that formed during the Himalayan orogeny and their crystallization temperatures, which are calculated from the Ti-in-zircon thermometer. Short-term rates are calculated from (U-Th)/He ages of the grains with appro- priate closure temperatures. The results show that short-term rates for the Himalayas, which range from 0.70 ± 0.09 to 2.67 ± 0.40 km/Myr and average 1.75 ± 0.59 (1δ) km/Myr, are higher and more varied than the long-term rates, which range from 0.84 ±0.16 to 1.85 ± 0.35 km/Myr and average 1.26 ±0.25 (let) km/Myr. The differences between the long-term and short-term rates can be attributed to continuous exhumation of the host rocks in different mechanisms in continental collision orogen. The U/Pb ages of 44.0 ± 3.7 to 18.3 ±0.5 Ma for the zircon rims indicate a protracted episode of -:25 Myr for regional metamorphism of the host rocks at deeper crust, whereas the (U-Th)/He ages of 42.2 ± 1.8 to 1.3 ± 0.2 Ma for the zircon grains represent a protracted period of -40 Myr for exposure of the host rocks to shallower crustal level. In particular, the oldest (U-Th)/He ages of the zircon grains are close to the oldest U/Pb ages for the rims, indicating that some parcels of the rocks that contain zircons were rapidly exhumed from deep to shallow levels in the stage of collisional orogeny. On the other hand, some parcels of the rocks may have been carried upwards by thrust faults in the post-collisional stage. The parcels could be carried upwards by the thrust faults that steepen as they near the surface, or by transient movement faults so that areas of rapid exhu- mation became areas of slow exhumation and visa versa on a time scale of a few Myr in order to maintain the continuous ex- humation. In this regard, the Ganges River must be preferentially sampling areas that are currently undergoing above average rates of uplift.