Most studies on spinal cord neuronal injury have focused on spinal cord tissue histology and the expression of nerve cell damage and repair-related genes. The importance of the microcirculation is often ignored in spi...Most studies on spinal cord neuronal injury have focused on spinal cord tissue histology and the expression of nerve cell damage and repair-related genes. The importance of the microcirculation is often ignored in spinal cord injury and repair research. Therefore, in this study, we established a rat model of intervertebral disc extrusion by inserting a silica gel pad into the left ventral sur-face of T13. Electroacupuncture was used to stimulate the bilateralZusanlipoint (ST36) and Neiting point (ST44) for 14 days. Compared with control animals, blood lfow in the ifrst lumbar vertebra (L1) was noticeably increased in rats given electroacupuncture. Microvessel density in the T13 segment of the spinal cord was increased significantly as well. The number of normal neurons was higher in the ventral horn of the spinal cord. In addition, vacuolation in the white matter was lessened. No obvious glial cell proliferation was visible. Furthermore, hindlimb motor function was improved signiifcantly. Collectively, our results suggest that electroacupuncture can improve neuronal morphology and microcirculation, and promote the recovery of neurological functions in a rat model of intervertebral disc extrusion.展开更多
This study reports an increase in power generation of a MFC (microbial fuel cell) by the addition of Korean ginseng (Panax ginseng). It was noted that the use of ginseng enhances the microbial anaerobic degradatio...This study reports an increase in power generation of a MFC (microbial fuel cell) by the addition of Korean ginseng (Panax ginseng). It was noted that the use of ginseng enhances the microbial anaerobic degradation of cellobiose, a disaccharide that was used as a substrate in the anode chamber of the MFC. The power output of the MFC where ginseng was added showed noticeable enhancement compared to the control MFC. The increase slowly ramped at the initial days and became appreciably higher after the 11th day of incubation in an experiment set up for 16 days duration. It is attributed that the ginseng increases the CO2 production by accelerating the fermentation process. Decrease in CH4/CO2 ratio was observed also due to decrease in methane production per digested cellobiose, the proton donor in the current study. Four ring steroid-like structural moiety Ginsenoside of Panax ginseng seemed to play a beneficial role in the electron transfer from ceilobiose to the anode, perhaps by rendering easier electron transfer due to favorable energy level alignments.展开更多
基金supported by the National Natural Science Foundation of China,No.31372473,30871886the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality of China,No.PHR201107134the 2012 Scientific Research Quality Raising Funds of Beijing University of Agriculture of China,No.PXM2012_014207_000010
文摘Most studies on spinal cord neuronal injury have focused on spinal cord tissue histology and the expression of nerve cell damage and repair-related genes. The importance of the microcirculation is often ignored in spinal cord injury and repair research. Therefore, in this study, we established a rat model of intervertebral disc extrusion by inserting a silica gel pad into the left ventral sur-face of T13. Electroacupuncture was used to stimulate the bilateralZusanlipoint (ST36) and Neiting point (ST44) for 14 days. Compared with control animals, blood lfow in the ifrst lumbar vertebra (L1) was noticeably increased in rats given electroacupuncture. Microvessel density in the T13 segment of the spinal cord was increased significantly as well. The number of normal neurons was higher in the ventral horn of the spinal cord. In addition, vacuolation in the white matter was lessened. No obvious glial cell proliferation was visible. Furthermore, hindlimb motor function was improved signiifcantly. Collectively, our results suggest that electroacupuncture can improve neuronal morphology and microcirculation, and promote the recovery of neurological functions in a rat model of intervertebral disc extrusion.
文摘This study reports an increase in power generation of a MFC (microbial fuel cell) by the addition of Korean ginseng (Panax ginseng). It was noted that the use of ginseng enhances the microbial anaerobic degradation of cellobiose, a disaccharide that was used as a substrate in the anode chamber of the MFC. The power output of the MFC where ginseng was added showed noticeable enhancement compared to the control MFC. The increase slowly ramped at the initial days and became appreciably higher after the 11th day of incubation in an experiment set up for 16 days duration. It is attributed that the ginseng increases the CO2 production by accelerating the fermentation process. Decrease in CH4/CO2 ratio was observed also due to decrease in methane production per digested cellobiose, the proton donor in the current study. Four ring steroid-like structural moiety Ginsenoside of Panax ginseng seemed to play a beneficial role in the electron transfer from ceilobiose to the anode, perhaps by rendering easier electron transfer due to favorable energy level alignments.