Background:The Einstein Probe mission is an astronomical satellite developed in China,focusing on time-domain astronomy in the soft X-ray energy band.A key payload of this mission is the follow-up X-ray telescope(FXT)...Background:The Einstein Probe mission is an astronomical satellite developed in China,focusing on time-domain astronomy in the soft X-ray energy band.A key payload of this mission is the follow-up X-ray telescope(FXT),which is the result of international collaboration between China and Europe.The FXT features gold-coated nickel Wolter-I-type focusing mirrors and utilizes PNCCD detectors for imaging and spectroscopy in the focal plane.Methods:We reviewed the seven-year development history of the FXT.Initially,the configuration of the FXT consisted of a single telescope unit in 2017,but it later evolved into a dual-unit setup.Building on the successful design of eROSITA,the FXT team has innovatively introduced new operational modes for the PNCCD.FXT team also developed an ultra-compact helium pulse tube refrigerator,which cools the PNCCD down to-90℃.Additionally,various passive shielding measures have been implemented to protect against high-energy charged particles and enhance radiation resistance.These advancements have significantly improved the overall performance and reliability of the FXT.Results and conclusion:The ground calibrations and tests of the FXT demonstrate that its primary performance meets the established design goals.The FXT has exhibited outstanding performance in orbit,establishing itself as one of the space X-ray telescopes with considerable international influence.展开更多
Purpose The follow-up X-ray telescope(FXT)is one of the two payloads of the Einstein Probe(EP),consisting of the upper composite with the X-ray mirror module as the core,the lower composite with the pnCCD module as th...Purpose The follow-up X-ray telescope(FXT)is one of the two payloads of the Einstein Probe(EP),consisting of the upper composite with the X-ray mirror module as the core,the lower composite with the pnCCD module as the core,and the interface structure.The FXT thermal control subsystem is responsible for the thermal design,thermal implementations,and testing of the entire FXT payload thermal control.Methods A design approach is adopted with passive thermal control technology as the main method and active thermal control technology as a supplement for common components.The X-ray mirror modules are high-precision optical components,utilizing active closed-loop temperature control to ensure high precision and stability.The pnCCD detectors operate at a stable low temperature,with refrigerators used to cool the detector houses,ensuring they can operate under stable low-temperature conditions.The hot ends of the refrigerators are connected to the external radiator panels through heat pipes for heat dissipation.Results The thermal control subsystem of FXT is operating properly in-orbit.All component temperatures meet the design requirements.Conclusion After multiple rounds of design and test verification,FXT was successfully launched with EP and completed in-orbit testing.During the in-orbit testing phase of EP,the function of the FXT thermal control subsystem works well.The temperatures of the components and units are normal.This paper introduces the design of FXT thermal control and the in-orbit performance of the thermal control subsystem.展开更多
In this paper,we present the current status of the enhanced X-ray Timing and Polarimetry mission,which has been fully approved for launch in 2030.eXTP is a space science mission designed to study fundamental physics u...In this paper,we present the current status of the enhanced X-ray Timing and Polarimetry mission,which has been fully approved for launch in 2030.eXTP is a space science mission designed to study fundamental physics under extreme conditions of matter density,gravity,and magnetism.The mission aims at determining the equation of state of matter at supra-nuclear density,measuring the effects of quantum electro-dynamics,and understanding the dynamics of matter in strong-field gravity.In addition to investigating fundamental physics,the eXTP mission is poised to become a leading observatory for time-domain and multi-messenger astronomy in the 2030s,as well as providing observations of unprecedented quality on a variety of galactic and extragalactic objects.After briefly introducing the history and a summary of the scientific objectives of the eXTP mission,this paper presents a comprehensive overview of:(1)the cutting-edge technology,technical specifications,and anticipated performance of the mission’s scientific instruments;(2)the full mission profile,encompassing spacecraft design,operational capabilities,and ground segment infrastructure.展开更多
基金supported by the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(Grant No.XDA 15310103).
文摘Background:The Einstein Probe mission is an astronomical satellite developed in China,focusing on time-domain astronomy in the soft X-ray energy band.A key payload of this mission is the follow-up X-ray telescope(FXT),which is the result of international collaboration between China and Europe.The FXT features gold-coated nickel Wolter-I-type focusing mirrors and utilizes PNCCD detectors for imaging and spectroscopy in the focal plane.Methods:We reviewed the seven-year development history of the FXT.Initially,the configuration of the FXT consisted of a single telescope unit in 2017,but it later evolved into a dual-unit setup.Building on the successful design of eROSITA,the FXT team has innovatively introduced new operational modes for the PNCCD.FXT team also developed an ultra-compact helium pulse tube refrigerator,which cools the PNCCD down to-90℃.Additionally,various passive shielding measures have been implemented to protect against high-energy charged particles and enhance radiation resistance.These advancements have significantly improved the overall performance and reliability of the FXT.Results and conclusion:The ground calibrations and tests of the FXT demonstrate that its primary performance meets the established design goals.The FXT has exhibited outstanding performance in orbit,establishing itself as one of the space X-ray telescopes with considerable international influence.
基金supported by the Einstein-Probe(EP)Program which is funded by the Strategic Priority Research Program of the Chinese Academy of Sciences Grant No.XDA15310103.
文摘Purpose The follow-up X-ray telescope(FXT)is one of the two payloads of the Einstein Probe(EP),consisting of the upper composite with the X-ray mirror module as the core,the lower composite with the pnCCD module as the core,and the interface structure.The FXT thermal control subsystem is responsible for the thermal design,thermal implementations,and testing of the entire FXT payload thermal control.Methods A design approach is adopted with passive thermal control technology as the main method and active thermal control technology as a supplement for common components.The X-ray mirror modules are high-precision optical components,utilizing active closed-loop temperature control to ensure high precision and stability.The pnCCD detectors operate at a stable low temperature,with refrigerators used to cool the detector houses,ensuring they can operate under stable low-temperature conditions.The hot ends of the refrigerators are connected to the external radiator panels through heat pipes for heat dissipation.Results The thermal control subsystem of FXT is operating properly in-orbit.All component temperatures meet the design requirements.Conclusion After multiple rounds of design and test verification,FXT was successfully launched with EP and completed in-orbit testing.During the in-orbit testing phase of EP,the function of the FXT thermal control subsystem works well.The temperatures of the components and units are normal.This paper introduces the design of FXT thermal control and the in-orbit performance of the thermal control subsystem.
基金the support of the National Natural Science Foundation of China(Grant No.12333007)the International Partnership Program of Chinese Academy of Sciences(Grant No.113111KYSB20190020)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA15020100)support by ASI,under the dedicated eXTP agreements and agreement ASI-INAF n.2017-14-H.O.by INAF and INFN under project REDSOXsupport from the Deutsche Zentrum für Luft-und Raumfahrt,the German Aerospace Center(DLR)support from MINECO grant ESP2017-82674-R and FEDER funds.
文摘In this paper,we present the current status of the enhanced X-ray Timing and Polarimetry mission,which has been fully approved for launch in 2030.eXTP is a space science mission designed to study fundamental physics under extreme conditions of matter density,gravity,and magnetism.The mission aims at determining the equation of state of matter at supra-nuclear density,measuring the effects of quantum electro-dynamics,and understanding the dynamics of matter in strong-field gravity.In addition to investigating fundamental physics,the eXTP mission is poised to become a leading observatory for time-domain and multi-messenger astronomy in the 2030s,as well as providing observations of unprecedented quality on a variety of galactic and extragalactic objects.After briefly introducing the history and a summary of the scientific objectives of the eXTP mission,this paper presents a comprehensive overview of:(1)the cutting-edge technology,technical specifications,and anticipated performance of the mission’s scientific instruments;(2)the full mission profile,encompassing spacecraft design,operational capabilities,and ground segment infrastructure.