Background In Central Europe,forests are increasingly affected by various disturbances,resulting in an increasing gap formation in the canopy.In order to support goal-oriented management,more knowledge is required abo...Background In Central Europe,forests are increasingly affected by various disturbances,resulting in an increasing gap formation in the canopy.In order to support goal-oriented management,more knowledge is required about the acclimation of the crown and its effects on the basal area growth of trees at the edge of a gap.Methods This work compared trees'growth and crown structure at the edge of a transient gap,with a gap size of more than 80m^(2),with trees in the stand that were at least 30m away from the gap.A total of 249 European beeches(Fagus sylvatica L.),Norway spruces(Picea abies L.Karst),Scots pines(Pinus sylvestris L.),oaks(Quercus spp.;Quercus petraea(Matt.)Liebl.,Quercus robur L.),and silver firs(Abies alba Mill.)were examined on long-term experimental plots in southern Germany.Various crown measures were developed and calculated using high-resolution terrestrial laser scanning(TLiDAR)to capture the three-dimensional crown structures.Growth responses to edge conditions were measured based on tree rings.Using linear mixed models,we predict the basal area increment of edge trees relative to trees in the stand under wet and dry soil moisture conditions after the gap formation.Results We identified i)species-specific acclimation of the crown of edge trees after the gap formation,ii)under wet soil moisture conditions a growth increase of 25%–45%for beech,pine,and oak edge trees and growth losses of 5%–60%for spruce and fir and iii)coniferous tree species benefited from the edge position regarding their basal area increment under dry soil moisture conditions and deciduous tree species grew regardless of the soil moisture conditions at the edge of a gap.Conclusion Gaps have a species-specific effect on the habitus and growth of edge trees and can have both positive and negative impacts on silviculture.展开更多
Background: Climate change triggered many studies showing that trends and events of environmental conditions can reduce but also accelerate growth at the stand and individual tree level. However, it is still rather un...Background: Climate change triggered many studies showing that trends and events of environmental conditions can reduce but also accelerate growth at the stand and individual tree level. However, it is still rather unknown how climate change modifies the growth partitioning between the trees in forest stands.Methods: Based on long-term girth-tape measurements in mature monospecific and mixed-species stands of Norway spruce(Picea abies(L.) Karst.) and European beech(Fagus sylvatica L.) we traced the effect of the severe droughts in 2003 and 2015 from the stand down to the tree level.Results: Stand growth of Norway spruce decreased by about 30% in the once-in-a-century drought 2015, while European beech was much more drought resistant. Water availability generally amplified size-asymmetric growth partitioning. Especially in case of Norway spruce water availability primarily fostered the growth of predominant trees, whereas drought favoured the growth of small trees at the expense of the predominant ones. We could not detect significant differences between mixed and monospecific stands in this regard.Conclusions: The drought-induced reallocation of growth in favour of small trees in case of spruce may result from its isohydric character. We hypothesize that as small trees are shaded, they can benefit from the reduced water consumption of their sun-exposed taller neighbours. In case of beech, as an anisohydric species, tall trees suffer less and smaller trees benefit less under drought. The discussion elaborates the consequences of the water dependent growth allocation for forest monitoring, growth modelling, and silviculture.展开更多
Background: Most current approaches in forest science and practice require information about structure and growth of individual trees rather than- or in addition to- sum and mean values of growth and yield at forest s...Background: Most current approaches in forest science and practice require information about structure and growth of individual trees rather than- or in addition to- sum and mean values of growth and yield at forest stand level as provided by classic experimental designs. By inventing the wheel design, Nelder provided the possibility to turn to the individual tree as basic information unit. Such trials provide valuable insights into the dependency of growth on stand density at particular sites.Methods: Here, we present an extension of the original design and evaluation by Nelder.(i) We established Nelder wheels along an environmental gradient through Europe in atlantic climate in Belgium and Germany, Mediterranean climate in Italy, continental climate in Hungary as well as on high land climate in Mexico. Such disjunct Nelder wheels along an environmental gradient can be regarded and analysed as a two-factor design with the factors of site condition and stand density.(ii) We present an advanced statistical approach to evaluate density dependent growth dynamics of trees planted in form of the Nelder design, which considers spatio-temporal autocorrelation.(iii)We prove the usefulness of the methods in improving ecological theory concerning density related productivity,trade-offs between facilitation and competition, and allometric relations between size variables.Results: First evaluations based on remeasured Nelder wheels in oak(Quercus robur L.) show a size growth differentiation during the first observation period. In particular, height growth is accelerated under higher competition indicating facilitation effects. We detect furthermore a high variability in allometric relations.Conclusions: The proposed design, methods, and results are discussed regarding their impact on forest practice,model building, and ecological theory. We conclude that the extended Nelder approach is highly efficient in providing currently lacking individual tree level information.展开更多
The growing conditions of urban trees differ substantially from forest sites and are mainly characterized by small planting pits with less water, nutrient and aeration availability, high temperatures and radiation inp...The growing conditions of urban trees differ substantially from forest sites and are mainly characterized by small planting pits with less water, nutrient and aeration availability, high temperatures and radiation inputs as well as pollution and soil compaction. Especially, global warming can amplify the negative effects of urban microclimates on tree growth, health and well-being of citizens. To quantify the growth of urban trees influenced by the urban climate, ten urban tree species in four climate zones were assessed in an overarching worldwide dendrochronological study. The focus of this analysis was the species water oak (Quercus nigra L.) in Houston, Texas, USA. Similar to the overall growth trend, we found in urban trees, water oaks displayed an accelerated growth during the last decades. Moreover, water oaks in the city center grew better than the water oaks growing in the rural surroundings of Houston, though this trend was reversed with high age. Growth habitat (urban, suburban, rural and forest) significantly affected tree growth (p < 0.001) with urban trees growing faster than rural growing trees and forest trees, though a younger age of urban trees might influence the found growth patterns. Growing site in terms of cardinal direction did not markedly influence tree growth, which was more influenced by the prevalent climatic conditions of Houston and the urban climate. Higher temperatures, an extended growing season and eutrophication can cause an accelerated growth of trees in urban regions across, across all climatic zones. However, an accelerated growth rate can have negative consequences like quicker ageing and tree death resulting in higher costs for new plantings and tree management as well as the decrease in ecosystem services due to a lack of old trees providing greatest benefits for mitigating the negative effects of the urban climate.展开更多
Background: Recent projections expect that Vietnam will be affected most severely by climate change with higher temperatures, more precipitation and rising sea levels. Especially increased temperatures will worsen the...Background: Recent projections expect that Vietnam will be affected most severely by climate change with higher temperatures, more precipitation and rising sea levels. Especially increased temperatures will worsen the situations in cities, amplifying the urban heat island effect. Green infrastructures, i.e. urban trees are a common rtool to improve the urban micro-climate for humans. Vital and well growing trees provide greatest benefits such as evaporative cooling, shading, air filtering and carbon storage. However, urban tree growth is often negatively affected by urban growing conditions such as high soil sealing with compacted tree pits providing small growing spaces with limited water, nutrient and oxygen supply, further warm temperatures and high pollution emissions. This study analyzed the growth of urban and rural African mahogany(Khaya senegalensis(Desr.) A. Juss.) trees in the city of Hanoi, Vietnam and the effects of the surrounding climate conditions on tree growth.Results: The results showed that rural African mahogany trees grew better than trees situated in the city center, which is contrary to other results on tree growth of temperate and subtropical cities worldwide. Moreover tree growth was similar regardless of the time of growth. Other results regarding stem growth of African mahogany located in different areas of Hanoi(east, west, north, city center) revealed a better growth in the northern and western outskirts of the city compared to the growth of trees in the city center.Conclusion: African mahogany trees in the urban centers of Hanoi showed a decreased growth compared to rural trees,which was likely induced by a low ground-water level and high pollution rates. In view of climate change and global warming, the decreased tree growth in the city center may also affect tree service provision such as shading and cooling. Those climate mitigation solutions are strongly needed in areas severely affected by climate change and global warming such as Vietnam.展开更多
Introduction:Changes in socio-economy and climate are affecting the demand of wood products globally.At the same time,society requires that forest supporting structures like biodiversity are maintained and preserved w...Introduction:Changes in socio-economy and climate are affecting the demand of wood products globally.At the same time,society requires that forest supporting structures like biodiversity are maintained and preserved while the demand for wood products is also covered.Management support systems,like forest simulation models,that are able to analyze connections as well as quantify trade-offs between forest structure management and biodiversity indicators are highly sought.However,such models are generally developed for the local plot or stand scale only and ecosystem-scale analyses are missing.In this study,we analyzed ways to interpret results from the single-tree forest simulator SILVA from the local to the ecosystem scale.We also analyzed the impacts of forest management on biodiversity using two species diversity indicators,the species profile index and the species intermingling,for scenarios adapted from the GLOBIOM model in the case study“Augsburg Western Forests”,a high productive region in South-Germany.In order to evaluate diversity tendencies across the ecosystem,we applied a moving window methodology.Results:The relevance of scale for the interpretation of management effects on species diversity was shown and clear differences between scenarios revealed.The differences between scenarios were particularly visible when comparing the two diversity indicators,especially because the species profile index focuses on vertical and horizontal information and the species intermingling focuses mainly on horizontal structures.Under a multifunctional scenario,biodiversity values could be preserved at all scales in the vertical dimension.However,under a bio-energy-oriented scenario diversity at the local scale was reduced,although at the ecosystem level,and only in the horizontal dimension,diversity remained at relatively high values.Conclusions:With this work,we can conclude that integrative modeling,with multiple scenarios,is highly needed to support forestry decision making and towards the evolution of forest management to consider the ecosystem scale,especially when the optimization of diversity is a management priority.展开更多
基金funded by the Bavarian Ministry of Nutrition,Agriculture and Forestry through the projects“Acclimation of Forest Trees”(grant#kliffw006)“Maintenance and Monitoring of long term experiments”(W007,grant#Gz:7831-1/874).
文摘Background In Central Europe,forests are increasingly affected by various disturbances,resulting in an increasing gap formation in the canopy.In order to support goal-oriented management,more knowledge is required about the acclimation of the crown and its effects on the basal area growth of trees at the edge of a gap.Methods This work compared trees'growth and crown structure at the edge of a transient gap,with a gap size of more than 80m^(2),with trees in the stand that were at least 30m away from the gap.A total of 249 European beeches(Fagus sylvatica L.),Norway spruces(Picea abies L.Karst),Scots pines(Pinus sylvestris L.),oaks(Quercus spp.;Quercus petraea(Matt.)Liebl.,Quercus robur L.),and silver firs(Abies alba Mill.)were examined on long-term experimental plots in southern Germany.Various crown measures were developed and calculated using high-resolution terrestrial laser scanning(TLiDAR)to capture the three-dimensional crown structures.Growth responses to edge conditions were measured based on tree rings.Using linear mixed models,we predict the basal area increment of edge trees relative to trees in the stand under wet and dry soil moisture conditions after the gap formation.Results We identified i)species-specific acclimation of the crown of edge trees after the gap formation,ii)under wet soil moisture conditions a growth increase of 25%–45%for beech,pine,and oak edge trees and growth losses of 5%–60%for spruce and fir and iii)coniferous tree species benefited from the edge position regarding their basal area increment under dry soil moisture conditions and deciduous tree species grew regardless of the soil moisture conditions at the edge of a gap.Conclusion Gaps have a species-specific effect on the habitus and growth of edge trees and can have both positive and negative impacts on silviculture.
基金European UnionAward Number 281116ERA02S+9 种基金Recipient:Hans PretzschProject Title:“Management of mixedspecies stands.Options for a low-risk forest management(REFORM)”Bayerisches Staatsministerium fur Ernahrung,Landwirtschaft und Forsten (Bavarian State Ministry for Nutrition,Agriculture,and Forestry)Award Number W07 7831–22209-2013Recipient:Hans PretzschProject Title:“Long-term experimental plots for forest growth and yield research”Deutsche Forschungsgemeinschaft (German Science Foundation)Award Number PR 292/12–1Recipient:Hans PretzschProject Title:“Tree and stand-level growth reactions on drought in mixed versus pure forests of Norway spruce and European beech”
文摘Background: Climate change triggered many studies showing that trends and events of environmental conditions can reduce but also accelerate growth at the stand and individual tree level. However, it is still rather unknown how climate change modifies the growth partitioning between the trees in forest stands.Methods: Based on long-term girth-tape measurements in mature monospecific and mixed-species stands of Norway spruce(Picea abies(L.) Karst.) and European beech(Fagus sylvatica L.) we traced the effect of the severe droughts in 2003 and 2015 from the stand down to the tree level.Results: Stand growth of Norway spruce decreased by about 30% in the once-in-a-century drought 2015, while European beech was much more drought resistant. Water availability generally amplified size-asymmetric growth partitioning. Especially in case of Norway spruce water availability primarily fostered the growth of predominant trees, whereas drought favoured the growth of small trees at the expense of the predominant ones. We could not detect significant differences between mixed and monospecific stands in this regard.Conclusions: The drought-induced reallocation of growth in favour of small trees in case of spruce may result from its isohydric character. We hypothesize that as small trees are shaded, they can benefit from the reduced water consumption of their sun-exposed taller neighbours. In case of beech, as an anisohydric species, tall trees suffer less and smaller trees benefit less under drought. The discussion elaborates the consequences of the water dependent growth allocation for forest monitoring, growth modelling, and silviculture.
基金funding the project"Biodiversity,productivity,and C-sequestration of oak stands"(No.5102150)the Bavarian State Ministry for Nutrition,Agriculture and Forestry for permanent support of the project W 07"Long-term experimental plots for forest growth and yield research"(7831-23953-2014)
文摘Background: Most current approaches in forest science and practice require information about structure and growth of individual trees rather than- or in addition to- sum and mean values of growth and yield at forest stand level as provided by classic experimental designs. By inventing the wheel design, Nelder provided the possibility to turn to the individual tree as basic information unit. Such trials provide valuable insights into the dependency of growth on stand density at particular sites.Methods: Here, we present an extension of the original design and evaluation by Nelder.(i) We established Nelder wheels along an environmental gradient through Europe in atlantic climate in Belgium and Germany, Mediterranean climate in Italy, continental climate in Hungary as well as on high land climate in Mexico. Such disjunct Nelder wheels along an environmental gradient can be regarded and analysed as a two-factor design with the factors of site condition and stand density.(ii) We present an advanced statistical approach to evaluate density dependent growth dynamics of trees planted in form of the Nelder design, which considers spatio-temporal autocorrelation.(iii)We prove the usefulness of the methods in improving ecological theory concerning density related productivity,trade-offs between facilitation and competition, and allometric relations between size variables.Results: First evaluations based on remeasured Nelder wheels in oak(Quercus robur L.) show a size growth differentiation during the first observation period. In particular, height growth is accelerated under higher competition indicating facilitation effects. We detect furthermore a high variability in allometric relations.Conclusions: The proposed design, methods, and results are discussed regarding their impact on forest practice,model building, and ecological theory. We conclude that the extended Nelder approach is highly efficient in providing currently lacking individual tree level information.
基金the AUDI Environmental Foundation for funding this study(project 5101954:“Reaktionskinetik von Baumenunter Klimaveranderungen”—“Reaction kinetics of trees under climate change”).
文摘The growing conditions of urban trees differ substantially from forest sites and are mainly characterized by small planting pits with less water, nutrient and aeration availability, high temperatures and radiation inputs as well as pollution and soil compaction. Especially, global warming can amplify the negative effects of urban microclimates on tree growth, health and well-being of citizens. To quantify the growth of urban trees influenced by the urban climate, ten urban tree species in four climate zones were assessed in an overarching worldwide dendrochronological study. The focus of this analysis was the species water oak (Quercus nigra L.) in Houston, Texas, USA. Similar to the overall growth trend, we found in urban trees, water oaks displayed an accelerated growth during the last decades. Moreover, water oaks in the city center grew better than the water oaks growing in the rural surroundings of Houston, though this trend was reversed with high age. Growth habitat (urban, suburban, rural and forest) significantly affected tree growth (p < 0.001) with urban trees growing faster than rural growing trees and forest trees, though a younger age of urban trees might influence the found growth patterns. Growing site in terms of cardinal direction did not markedly influence tree growth, which was more influenced by the prevalent climatic conditions of Houston and the urban climate. Higher temperatures, an extended growing season and eutrophication can cause an accelerated growth of trees in urban regions across, across all climatic zones. However, an accelerated growth rate can have negative consequences like quicker ageing and tree death resulting in higher costs for new plantings and tree management as well as the decrease in ecosystem services due to a lack of old trees providing greatest benefits for mitigating the negative effects of the urban climate.
基金Funding Source:AUDI Environmental Foundation(project 5101954:"Reaktionskinetik von B(a|¨)umen unter Klimaver(a|¨)nderungen"-"Reaction kinetics of trees under climate change")
文摘Background: Recent projections expect that Vietnam will be affected most severely by climate change with higher temperatures, more precipitation and rising sea levels. Especially increased temperatures will worsen the situations in cities, amplifying the urban heat island effect. Green infrastructures, i.e. urban trees are a common rtool to improve the urban micro-climate for humans. Vital and well growing trees provide greatest benefits such as evaporative cooling, shading, air filtering and carbon storage. However, urban tree growth is often negatively affected by urban growing conditions such as high soil sealing with compacted tree pits providing small growing spaces with limited water, nutrient and oxygen supply, further warm temperatures and high pollution emissions. This study analyzed the growth of urban and rural African mahogany(Khaya senegalensis(Desr.) A. Juss.) trees in the city of Hanoi, Vietnam and the effects of the surrounding climate conditions on tree growth.Results: The results showed that rural African mahogany trees grew better than trees situated in the city center, which is contrary to other results on tree growth of temperate and subtropical cities worldwide. Moreover tree growth was similar regardless of the time of growth. Other results regarding stem growth of African mahogany located in different areas of Hanoi(east, west, north, city center) revealed a better growth in the northern and western outskirts of the city compared to the growth of trees in the city center.Conclusion: African mahogany trees in the urban centers of Hanoi showed a decreased growth compared to rural trees,which was likely induced by a low ground-water level and high pollution rates. In view of climate change and global warming, the decreased tree growth in the city center may also affect tree service provision such as shading and cooling. Those climate mitigation solutions are strongly needed in areas severely affected by climate change and global warming such as Vietnam.
基金This research was funded through the 2015-2016 BiodivERsA COFUND for research proposals,with the national funders“German Ministry of Education and Research-BMBF”and“Deutsche Forschungsgemeinschaft-DFG.”
文摘Introduction:Changes in socio-economy and climate are affecting the demand of wood products globally.At the same time,society requires that forest supporting structures like biodiversity are maintained and preserved while the demand for wood products is also covered.Management support systems,like forest simulation models,that are able to analyze connections as well as quantify trade-offs between forest structure management and biodiversity indicators are highly sought.However,such models are generally developed for the local plot or stand scale only and ecosystem-scale analyses are missing.In this study,we analyzed ways to interpret results from the single-tree forest simulator SILVA from the local to the ecosystem scale.We also analyzed the impacts of forest management on biodiversity using two species diversity indicators,the species profile index and the species intermingling,for scenarios adapted from the GLOBIOM model in the case study“Augsburg Western Forests”,a high productive region in South-Germany.In order to evaluate diversity tendencies across the ecosystem,we applied a moving window methodology.Results:The relevance of scale for the interpretation of management effects on species diversity was shown and clear differences between scenarios revealed.The differences between scenarios were particularly visible when comparing the two diversity indicators,especially because the species profile index focuses on vertical and horizontal information and the species intermingling focuses mainly on horizontal structures.Under a multifunctional scenario,biodiversity values could be preserved at all scales in the vertical dimension.However,under a bio-energy-oriented scenario diversity at the local scale was reduced,although at the ecosystem level,and only in the horizontal dimension,diversity remained at relatively high values.Conclusions:With this work,we can conclude that integrative modeling,with multiple scenarios,is highly needed to support forestry decision making and towards the evolution of forest management to consider the ecosystem scale,especially when the optimization of diversity is a management priority.