We compare the performance of two very different parallel gravitational N-body codes for astrophysical simulations on large Graphics Processing Unit(GPU) clusters, both of which are pioneers in their own fields as w...We compare the performance of two very different parallel gravitational N-body codes for astrophysical simulations on large Graphics Processing Unit(GPU) clusters, both of which are pioneers in their own fields as well as on certain mutual scales- NBODY6++ and Bonsai. We carry out benchmarks of the two codes by analyzing their performance, accuracy and efficiency through the modeling of structure decomposition and timing measurements. We find that both codes are heavily optimized to leverage the computational potential of GPUs as their performance has approached half of the maximum single precision performance of the underlying GPU cards. With such performance we predict that a speed-up of200- 300 can be achieved when up to 1k processors and GPUs are employed simultaneously. We discuss the quantitative information about comparisons of the two codes, finding that in the same cases Bonsai adopts larger time steps as well as larger relative energy errors than NBODY6++, typically ranging from10- 50 times larger, depending on the chosen parameters of the codes. Although the two codes are built for different astrophysical applications, in specified conditions they may overlap in performance at certain physical scales, thus allowing the user to choose either one by fine-tuning parameters accordingly.展开更多
The binary population in field stars and star clusters contributes to the formation of gravitational wave(GW)sources.However,the fraction of compact-object binaries(CBs),which is an important feature parameter of bina...The binary population in field stars and star clusters contributes to the formation of gravitational wave(GW)sources.However,the fraction of compact-object binaries(CBs),which is an important feature parameter of binary populations,is still difficult to measure and very uncertain.This paper predicts the fractions of important CBs and semi-compact object binaries(SCBs) making use of an advanced stellar population synthesis technique.A comparison with the result of N-body simulation is also presented.It is found that most CBs are formed within about 500 Myr after the starburst.The fractions of CBs and SCBs are demonstrated to correlate with stellar metallicity.The higher the metallicity becomes,the smaller the fraction of black hole binaries(BHBs),neutron star binaries(NSBs) and SCBs.This suggests that the GW sources of BHBs and NSBs are more likely to form in metal-poor environments.However,the fraction of black hole-neutron star binaries is shown to be larger for metalrich populations on average.展开更多
Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. Th...Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. These cores are practically trapped in false vacua, rendering their detection by outside observers impossible. Based on massive parallel computations and theoretical investigations, we show that SMDEOs at the centres of spiral galaxies that are surrounded by massive rotating torii of normal matter may serve as powerful sources for gravitational waves carrying away roughly 1042 erg/s. Due to the extensive cooling by GWs, the SMDEO-Torus systems undergo glitching, through which both rotational and gravitational energies are abruptly ejected into the ambient media, during which the topologies of the embedding spacetimes change from curved into flatter ones, thereby triggering a burst gravitational energy of order 1059 erg. Also, the effects of glitches found to alter the force balance of objects in the Lagrangian-L1 region between the central SMDEO-Torus system and the bulge, enforcing the enclosed objects to develop violent motions, that may explain the origin of the rotational curve irregularities observed in the innermost part of spiral galaxies. Our study shows that the generated GWs at the centres of galaxies, which traverse billions of objects during their outward propagations throughout the entire galaxy, lose energy due to repeatedly squeezing and stretching the objects. Here, we find that these interactions may serve as damping processes that give rise to the formation of collective forces f∝m(r)/r, that point outward, endowing the objects with the observed flat rotation curves. Our approach predicts a correlation between the baryonic mass and the rotation velocities in galaxies, which is in line with the Tully-Fisher relation. The here-presented self-consistent approach explains nicely the observed rotation curves without invoking dark matter or modifying Newtonian gravitation in the low-field approximation.展开更多
基金support by Chinese Academy of Sciences through the Silk Road Project at NAOC,through the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists,Grant Number 2009S1-5 (RS)the “Qianren” special foreign experts program of China+2 种基金funded by the Ministry of Finance of the People’s Republic of China under the grant ZDY Z2008-2,has been used for the simulationsthe supercomputer “The Milky Way System” at Julich Supercomputing Centre in Germany,built for SFB881 at the University of Heidelberg,Germanythe special support by the NAS Ukraine under the Main Astronomical Observatory GPU/GRID computing cluster project
文摘We compare the performance of two very different parallel gravitational N-body codes for astrophysical simulations on large Graphics Processing Unit(GPU) clusters, both of which are pioneers in their own fields as well as on certain mutual scales- NBODY6++ and Bonsai. We carry out benchmarks of the two codes by analyzing their performance, accuracy and efficiency through the modeling of structure decomposition and timing measurements. We find that both codes are heavily optimized to leverage the computational potential of GPUs as their performance has approached half of the maximum single precision performance of the underlying GPU cards. With such performance we predict that a speed-up of200- 300 can be achieved when up to 1k processors and GPUs are employed simultaneously. We discuss the quantitative information about comparisons of the two codes, finding that in the same cases Bonsai adopts larger time steps as well as larger relative energy errors than NBODY6++, typically ranging from10- 50 times larger, depending on the chosen parameters of the codes. Although the two codes are built for different astrophysical applications, in specified conditions they may overlap in performance at certain physical scales, thus allowing the user to choose either one by fine-tuning parameters accordingly.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.11863002 and 11673032)Yunnan Academician Workstation of Wang Jingxiu(202005AF150025)+7 种基金China Manned Space Project with No.CMS-CSST-2021-A08Sino-German Cooperation Project(No.GZ 1284)supported by the Volkswagen Foundation under the special stipend No.9B870(2022)the support within the grant No.AP14869395 of the Science Committee of the Ministry of Science,Higher Education of Kazakhstan(“Triune model of Galactic center dynamical evolution on cosmological timescale”)Ministry of Education and Science of Ukraine under the collaborative grant M/32-23.05.2022the National Academy of Sciences of Ukraine under the Main Astronomical Observatory GPU computing cluster project No.13.2021.MMsupported by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-ProjectID 138713538—SFB 881(“The Milky Way System”)by the Volkswagen Foundation under the Trilateral Partnerships grant Nos.90411 and 97778。
文摘The binary population in field stars and star clusters contributes to the formation of gravitational wave(GW)sources.However,the fraction of compact-object binaries(CBs),which is an important feature parameter of binary populations,is still difficult to measure and very uncertain.This paper predicts the fractions of important CBs and semi-compact object binaries(SCBs) making use of an advanced stellar population synthesis technique.A comparison with the result of N-body simulation is also presented.It is found that most CBs are formed within about 500 Myr after the starburst.The fractions of CBs and SCBs are demonstrated to correlate with stellar metallicity.The higher the metallicity becomes,the smaller the fraction of black hole binaries(BHBs),neutron star binaries(NSBs) and SCBs.This suggests that the GW sources of BHBs and NSBs are more likely to form in metal-poor environments.However,the fraction of black hole-neutron star binaries is shown to be larger for metalrich populations on average.
文摘Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. These cores are practically trapped in false vacua, rendering their detection by outside observers impossible. Based on massive parallel computations and theoretical investigations, we show that SMDEOs at the centres of spiral galaxies that are surrounded by massive rotating torii of normal matter may serve as powerful sources for gravitational waves carrying away roughly 1042 erg/s. Due to the extensive cooling by GWs, the SMDEO-Torus systems undergo glitching, through which both rotational and gravitational energies are abruptly ejected into the ambient media, during which the topologies of the embedding spacetimes change from curved into flatter ones, thereby triggering a burst gravitational energy of order 1059 erg. Also, the effects of glitches found to alter the force balance of objects in the Lagrangian-L1 region between the central SMDEO-Torus system and the bulge, enforcing the enclosed objects to develop violent motions, that may explain the origin of the rotational curve irregularities observed in the innermost part of spiral galaxies. Our study shows that the generated GWs at the centres of galaxies, which traverse billions of objects during their outward propagations throughout the entire galaxy, lose energy due to repeatedly squeezing and stretching the objects. Here, we find that these interactions may serve as damping processes that give rise to the formation of collective forces f∝m(r)/r, that point outward, endowing the objects with the observed flat rotation curves. Our approach predicts a correlation between the baryonic mass and the rotation velocities in galaxies, which is in line with the Tully-Fisher relation. The here-presented self-consistent approach explains nicely the observed rotation curves without invoking dark matter or modifying Newtonian gravitation in the low-field approximation.