Accurate quantification of life-cycle greenhouse gas(GHG)footprints(GHG_(fp))for a crop cultivation system is urgently needed to address the conflict between food security and global warming mitigation.In this study,t...Accurate quantification of life-cycle greenhouse gas(GHG)footprints(GHG_(fp))for a crop cultivation system is urgently needed to address the conflict between food security and global warming mitigation.In this study,the hydrobiogeochemical model,CNMM-DNDC,was validated with in situ observations from maize-based cultivation systems at the sites of Yongji(YJ,China),Yanting(YT,China),and Madeya(MA,Kenya),subject to temperate,subtropical,and tropical climates,respectively,and updated to enable life-cycle GHG_(fp)estimation.The model validation provided satisfactory simulations on multiple soil variables,crop growth,and emissions of GHGs and reactive nitrogen gases.The locally conventional management practices resulted in GHG_(fp)values of 0.35(0.09–0.53 at the 95%confidence interval),0.21(0.01–0.73),0.46(0.27–0.60),and 0.54(0.21–0.77)kg CO_(2)e kg~(-1)d.m.(d.m.for dry matter in short)for maize–wheat rotation at YJ and YT,and for maize–maize and maize–Tephrosia rotations at MA,respectively.YT's smallest GHG_(fp)was attributed to its lower off-farm GHG emissions than YJ,though the soil organic carbon(SOC)storage and maize yield were slightly lower than those of YJ.MA's highest SOC loss and low yield in shifting cultivation for maize–Tephrosia rotation contributed to its highest GHG_(fp).Management practices of maize cultivation at these sites could be optimized by combination of synthetic and organic fertilizer(s)while incorporating 50%–100%crop residues.Further evaluation of the updated CNMM-DNDC is needed for different crops at site and regional scales to confirm its worldwide applicability in quantifying GHG_(fp)and optimizing management practices for achieving multiple sustainability goals.展开更多
基金jointly supported by the National Key R&D Program of China(Grant No.2022YFE0209200)the National Natural Science Foundation of China(Grant Nos.U22A20562,42330607 and 41761144054)the National Large Scientific and Technological Infrastructure“Earth System Science Numerical Simulator Facility”(Earth-Lab)(https://cstr.cn/31134.02.EL)。
文摘Accurate quantification of life-cycle greenhouse gas(GHG)footprints(GHG_(fp))for a crop cultivation system is urgently needed to address the conflict between food security and global warming mitigation.In this study,the hydrobiogeochemical model,CNMM-DNDC,was validated with in situ observations from maize-based cultivation systems at the sites of Yongji(YJ,China),Yanting(YT,China),and Madeya(MA,Kenya),subject to temperate,subtropical,and tropical climates,respectively,and updated to enable life-cycle GHG_(fp)estimation.The model validation provided satisfactory simulations on multiple soil variables,crop growth,and emissions of GHGs and reactive nitrogen gases.The locally conventional management practices resulted in GHG_(fp)values of 0.35(0.09–0.53 at the 95%confidence interval),0.21(0.01–0.73),0.46(0.27–0.60),and 0.54(0.21–0.77)kg CO_(2)e kg~(-1)d.m.(d.m.for dry matter in short)for maize–wheat rotation at YJ and YT,and for maize–maize and maize–Tephrosia rotations at MA,respectively.YT's smallest GHG_(fp)was attributed to its lower off-farm GHG emissions than YJ,though the soil organic carbon(SOC)storage and maize yield were slightly lower than those of YJ.MA's highest SOC loss and low yield in shifting cultivation for maize–Tephrosia rotation contributed to its highest GHG_(fp).Management practices of maize cultivation at these sites could be optimized by combination of synthetic and organic fertilizer(s)while incorporating 50%–100%crop residues.Further evaluation of the updated CNMM-DNDC is needed for different crops at site and regional scales to confirm its worldwide applicability in quantifying GHG_(fp)and optimizing management practices for achieving multiple sustainability goals.