This paper uses the estimation of the Self-Excited Multi Fractal (SEMF) model, which holds theoretical promise but has seen mixed results in practice, as a case study to explore the impact of distributional assumption...This paper uses the estimation of the Self-Excited Multi Fractal (SEMF) model, which holds theoretical promise but has seen mixed results in practice, as a case study to explore the impact of distributional assumptions on the model fitting process. In the case of the SEMF model, this examination shows that incorporating reasonable distributional assumptions including a non-zero mean and the leptokurtic Student’s t distribution can have a substantial impact on the estimation results and can mean the difference between parameter estimates that imply unstable and potentially explosive volatility dynamics versus ones that describe more reasonable and realistic dynamics for the returns. While the original SEMF model specification is found to yield unrealistic results for most of the series of financial returns to which it is applied, the results obtained after incorporating the Student’s t distribution and a mean component into the model specification suggest that the SEMF model is a reasonable model, implying realistic return behavior, for most, if not all, of the series of stock and index returns to which it is applied in this study. In addition, reflecting the sensitivity of the sample mean to the types of characteristics that the SEMF model is designed to capture, the results of this study also illustrate the value of incorporating the mean component directly into the model and fitting it in conjunction with the other model parameters rather than simply centering the returns beforehand by subtracting the sample mean from them.展开更多
文摘This paper uses the estimation of the Self-Excited Multi Fractal (SEMF) model, which holds theoretical promise but has seen mixed results in practice, as a case study to explore the impact of distributional assumptions on the model fitting process. In the case of the SEMF model, this examination shows that incorporating reasonable distributional assumptions including a non-zero mean and the leptokurtic Student’s t distribution can have a substantial impact on the estimation results and can mean the difference between parameter estimates that imply unstable and potentially explosive volatility dynamics versus ones that describe more reasonable and realistic dynamics for the returns. While the original SEMF model specification is found to yield unrealistic results for most of the series of financial returns to which it is applied, the results obtained after incorporating the Student’s t distribution and a mean component into the model specification suggest that the SEMF model is a reasonable model, implying realistic return behavior, for most, if not all, of the series of stock and index returns to which it is applied in this study. In addition, reflecting the sensitivity of the sample mean to the types of characteristics that the SEMF model is designed to capture, the results of this study also illustrate the value of incorporating the mean component directly into the model and fitting it in conjunction with the other model parameters rather than simply centering the returns beforehand by subtracting the sample mean from them.