Objective: To investigate the prognostic factors in chemorefractory colorectal cancer liver metastasis(CRCLM)patients treated by transarterial chemoembolization(TACE) and sustained hepatic arterial infusion chemo...Objective: To investigate the prognostic factors in chemorefractory colorectal cancer liver metastasis(CRCLM)patients treated by transarterial chemoembolization(TACE) and sustained hepatic arterial infusion chemotherapy(HAIC).Methods: Between 2006 and 2015, 162 patients who underwent 763 TACE and HAIC in total were enrolled in this retrospective study, including 110 males and 52 females, with a median age of 60(range, 26–83) years.Prognostic factors were assessed with Log-rank test, Cox univariate and multivariate analyses.Results: The median survival time(MST) and median progression-free survival(PFS) of the 162 patients from first TACE/HAIC were 15.6 months and 5.5 months respectively. Normal serum carbohydrate antigen 19-9(CA19-9, 〈37 U/m L)(P〈0.001) and carbohydrate antigen 72-4(CA72-4, 〈6.7 U/m L)(P=0.026), combination with other local treatment(liver radiotherapy or liver radiofrequency ablation)(P=0.034) and response to TACE/HAIC(P〈0.001) were significant factors related to survival after TACE/HAIC in univariate analysis. A multivariate analysis revealed that normal serum CA19-9(P〈0.001), response to TACE/HAIC(P〈0.001) and combination with other local treatment(P=0.001) were independent factors among them.Conclusions: Our findings indicate that serum CA19-9 〈37 U/m L and response to TACE/HAIC are significant prognostic indicators for this combined treatment, and treated with other local treatment could reach a considerable survival benefit for CRCLM. This could be useful for making decisions regarding the treatment of CRCLM.展开更多
The geometrically multiplied development of 2D MXenes has already promoted the prosperity of various fields of scientific researches especially but not limited in energy storage and conversion.Notably,cation intercala...The geometrically multiplied development of 2D MXenes has already promoted the prosperity of various fields of scientific researches especially but not limited in energy storage and conversion.Notably,cation intercalation can improve the interlayer spacing of MXenes resulting in tunable physical and chemical properties.Moreover,the synchrotron radiation X-ray characterizations have also shown high potential on exploring the property and structu re of cation intercalated MXe nes.This review is mainly focused on the recent achievements of cation intercalated MXenes through different methods on energy storage systems.Synchrotron-based X-ray absorption spectroscopic characterizations are emphasized to probe the local coordination and electronic structure in intercalated MXenes.The outlook of cation intercalation on MXenes and their applications are also discus sed.展开更多
Under combined electro-thermo-mechanical loadings, the nonlinear bending of piezoelectric cylindrical shell reinforced with boron nitride nanotubes (BNNTs) is investigated in this paper. By employing nonlinear strains...Under combined electro-thermo-mechanical loadings, the nonlinear bending of piezoelectric cylindrical shell reinforced with boron nitride nanotubes (BNNTs) is investigated in this paper. By employing nonlinear strains based on Donnell shell theory and utilizing piezoelectric theory including thermal effects, the constitutive relations of the piezoelectric shell reinforced with BNNTs are established. Then the governing equations of the structure are derived through variational principle and resolved by applying the finite difference method. In numerical examples, the effects of geometric nonlinear, voltage, temperature, as well as volume fraction on the deflection and bending moment of axisymmetrical piezoelectric cylindrical shell reinforced with BNNTs are discussed in detail.展开更多
With the advancement of modern science and technology, large scientific facilities are increasingly oriented toward demand and application, and can be used for basic research as well as serving multiple disciplines. D...With the advancement of modern science and technology, large scientific facilities are increasingly oriented toward demand and application, and can be used for basic research as well as serving multiple disciplines. Developing large scientific facilities and related analytical technologies enhances understanding of large scientific facilities and popularizes their application in research across multiple disciplines. The combination of light or neutron sources from large scientific facilities and advanced analytical technologies can be achieved for materials structure information, dynamics study of chemical reactions, high dissociation of biomolecules, 3D visualization of energy materials or biological samples, etc. We first introduce the progress of domestic large scientific facilities of synchrotron radiation(SR) and free electron lasers(FELs) with different wavelengths and neutron sources.We further discuss the comparison between Chinese and typical foreign facilities in X-ray radiation from X-ray tubes, synchrotrons, X-ray FELs, and neutron sources based on physical parameters of light and neutron sources. In addition, we focus on the technological progress and perspectives combined with advanced X-ray radiation and neutron sources of large scientific facilities in China, especially in the nanoscience fields of energy catalysis and biological science. We hope that this roadmap will provide references on technology and methods to experimental users, as well as prospects for future development of technologies based on large research infrastructure facilities. Comprehensive studies and guidelines for basic research to practical application in various disciplines can be made with the assistance of large scientific facilities.展开更多
The electrocatalysis of oxygen evolution reaction(OER)plays a key role in clean energy storage and transfer.Nonetheless,the sluggish kinetics and poor durability under acidic and neutral conditions severely hinder pra...The electrocatalysis of oxygen evolution reaction(OER)plays a key role in clean energy storage and transfer.Nonetheless,the sluggish kinetics and poor durability under acidic and neutral conditions severely hinder practical applications such as electrolyzer compatible with the powerful proton exchange membrane and biohybrid fuel production.Here,we report a borondoped ruthenium dioxide electrocatalyst(B-RuO_(2))fabricated by a facile boric acid assisted strategy which demonstrates excellent acidic and neutral OER performances.Density functional theory calculations and advanced characterizations reveal that the boron species form an anomalous B–O covalent bonding with the oxygen atoms of RuO_(2)and expose the fully coordinately bridge ruthenium site(Ru-bri site),which seems like a switch that turns on the inactive Ru-bri site into OER-active,resulting in more exposed active sites,modified electronic structure,and optimized binding energy of intermediates.Thus,the B-RuO_(2)exhibits an ultralow overpotential of 200 mV at 10 mA/cm^(2)and maintains excellent stability compared to commercial RuO_(2)in 0.5 M sulfuric acid.Moreover,the superior performance is as well displayed in neutral electrolyte,surpassing most previously reported catalysts.展开更多
Sodium-ion batteries(SIBs)are considered the most up-and-coming complements for large-scale energy storage devices due to the abundance and cheap sodium.However,due to the bigger radius,it is still a great challenge t...Sodium-ion batteries(SIBs)are considered the most up-and-coming complements for large-scale energy storage devices due to the abundance and cheap sodium.However,due to the bigger radius,it is still a great challenge to develop anode materials with suitable space for the intercalation of sodium ions.Herein,we present hard carbon microtubes(HCTs)with tunable apertures derived from low-cost natural kapok fibers via a carbonization process for SIBs.The resulted HCTs feature with smaller surface area and shorter Na+diffusion path benefitting from their unique micro-nano structure.Most importantly,the wall thickness of HCTs could be regulated and controlled by the carbonization temperature.At a high temperature of 1,600℃,the carbonized HCTs possess the smallest wall thickness,which reduces the diffusion barrier of Na+and enhances the reversibility Na+storage.As a result,the 1600HCTs deliver a high initial Coulombic efficiency of 90%,good cycling stability(89.4%of capacity retention over 100 cycles at 100 mA·g^(−1)),and excellent rate capacity.This work not only charts a new path for preparing hard carbon materials with adequate ion channels and novel tubular micro-nano structures but also unravels the mechanism of hard carbon materials for sodium storage.展开更多
Taking advantage of the unique layered structure of TiSe2,the intrinsic electronic properties of two-dimensional materials can easily be tuned via heteroatomic engineering.Herein,we show that the charge density wave(C...Taking advantage of the unique layered structure of TiSe2,the intrinsic electronic properties of two-dimensional materials can easily be tuned via heteroatomic engineering.Herein,we show that the charge density wave(CDW)phase in 1T-TiSe_(2) single-crystals can be gradually suppressed through Sn atoms intercalation.Using angle-resolved photoemission spectroscopy(ARPES)and temperature-dependent resistivity measurements,this work reveals that Sn atoms can induce charge doping and modulate the intrinsic electronic properties in the host 1T-TiSe_(2).Notably,our temperature-dependent ARPES results highlight the role exciton-phonon interaction and the Jahn-Teller mechanism through the formation of backfolded bands and exhibition of a downward Se shift of 4p valence band in the formation of CDW in this material.展开更多
“Intrinsic”strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance.Nevertheless,the structure–activity ...“Intrinsic”strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance.Nevertheless,the structure–activity relationship between defects and charge storage is ambiguous,which may be revealed by constructing highly ordered vacancy structures.Herein,we demonstrate molybdenum carbide MXene nanosheets with customized in-plane chemical ordered vacancies(Mo_(1.33)CT_(x)),by utilizing selective etching strategies.Synchrotron-based X-ray characterizations reveal that Mo atoms in Mo1.33CTx show increased average valence of+4.44 compared with the control Mo_(2)CT_(x).Benefited from the introduced atomic active sites and high valence of Mo,Mo_(1.33)CT_(x)achieves an outstanding capacity of 603 mAh·g^(−1)at 0.2 A·g^(−1),superior to most original MXenes.Li+storage kinetics analysis and density functional theory(DFT)simulations show that this optimized performance ensues from the more charge compensation during charge–discharge process,which enhances Faraday reaction compared with pure Mo_(2)CT_(x).This vacancy manipulation provides an efficient way to realize MXene’s potential as promising electrodes.展开更多
Transition metal selenides have aroused great attention in recent years due to their high theoretical capacity.However,the huge volume fluctuation generated by conversion reaction during the charge/discharge process r...Transition metal selenides have aroused great attention in recent years due to their high theoretical capacity.However,the huge volume fluctuation generated by conversion reaction during the charge/discharge process results in the significant electrochemical performance reduction.Herein,the carbon-regulated copper(I)selenide(Cu_(2)Se@C)is designed to significantly promote the interface stability and ion diffusion for selenide electrodes.The systematic X-ray spectroscopies characterizations and density functional theory(DFT)simulations reveal that the Cu–Se–C bonding forming on the surface of Cu2Se not only improves the electronic conductivity of Cu_(2)Se@C but also retards the volume change during electrochemical cycling,playing a pivotal role in interface regulation.Consequently,the storage kinetics of Cu_(2)Se@C is mainly controlled by the capacitance process diverting from the ion diffusion-controlled process of Cu2Se.When employed this distinctive Cu_(2)Se@C as anode active material in Li coin cell configuration,the ultrahigh specific capacity of 810.3 mA·h·g^(−1)at 0.1 A·g^(−1)and the capacity retention of 83%after 1,500 cycles at 5 A·g^(−1)is achieved,implying the best Cu-based Li^(+)-storage capacity reported so far.This strategy of heterojunction combined with chemical bonding regulation opens up a potential way for the development of advanced electrodes for battery storage systems.展开更多
基金supported by Capital Medical Development and Scientific Research Fund, China (No. 2014-2-2154)National Science Foundation of China (No. 81571781)
文摘Objective: To investigate the prognostic factors in chemorefractory colorectal cancer liver metastasis(CRCLM)patients treated by transarterial chemoembolization(TACE) and sustained hepatic arterial infusion chemotherapy(HAIC).Methods: Between 2006 and 2015, 162 patients who underwent 763 TACE and HAIC in total were enrolled in this retrospective study, including 110 males and 52 females, with a median age of 60(range, 26–83) years.Prognostic factors were assessed with Log-rank test, Cox univariate and multivariate analyses.Results: The median survival time(MST) and median progression-free survival(PFS) of the 162 patients from first TACE/HAIC were 15.6 months and 5.5 months respectively. Normal serum carbohydrate antigen 19-9(CA19-9, 〈37 U/m L)(P〈0.001) and carbohydrate antigen 72-4(CA72-4, 〈6.7 U/m L)(P=0.026), combination with other local treatment(liver radiotherapy or liver radiofrequency ablation)(P=0.034) and response to TACE/HAIC(P〈0.001) were significant factors related to survival after TACE/HAIC in univariate analysis. A multivariate analysis revealed that normal serum CA19-9(P〈0.001), response to TACE/HAIC(P〈0.001) and combination with other local treatment(P=0.001) were independent factors among them.Conclusions: Our findings indicate that serum CA19-9 〈37 U/m L and response to TACE/HAIC are significant prognostic indicators for this combined treatment, and treated with other local treatment could reach a considerable survival benefit for CRCLM. This could be useful for making decisions regarding the treatment of CRCLM.
基金financially supported in part by National Key R&D Program of China(No.2017YFA0303500)the National Natural Science Foundation of China(NSFC,Nos.U1932201,11574280,21727801,11605201)+6 种基金Innovative Research Groups of NSFC(No.11621063)the Fundamental Research Funds for the Central Universities(No.WK2310000074)Anhui Provincial Natural Science Foundation(No.1708085QB27)National Natural Science Foundation of China and Ministry of Foreign Affairs and International Cooperation of Italy(NSFC-MAECI,No.51861135202)CAS Key Research Program of Frontier Sciences(No.QYZDB-SSWSLH018)CAS Iterdisciplinary Innovation Team and National Postdoctoral Program for Innovative Talents(No.BX20190315)the support from Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education),Nankai University(111 project,No.B12015)。
文摘The geometrically multiplied development of 2D MXenes has already promoted the prosperity of various fields of scientific researches especially but not limited in energy storage and conversion.Notably,cation intercalation can improve the interlayer spacing of MXenes resulting in tunable physical and chemical properties.Moreover,the synchrotron radiation X-ray characterizations have also shown high potential on exploring the property and structu re of cation intercalated MXe nes.This review is mainly focused on the recent achievements of cation intercalated MXenes through different methods on energy storage systems.Synchrotron-based X-ray absorption spectroscopic characterizations are emphasized to probe the local coordination and electronic structure in intercalated MXenes.The outlook of cation intercalation on MXenes and their applications are also discus sed.
文摘Under combined electro-thermo-mechanical loadings, the nonlinear bending of piezoelectric cylindrical shell reinforced with boron nitride nanotubes (BNNTs) is investigated in this paper. By employing nonlinear strains based on Donnell shell theory and utilizing piezoelectric theory including thermal effects, the constitutive relations of the piezoelectric shell reinforced with BNNTs are established. Then the governing equations of the structure are derived through variational principle and resolved by applying the finite difference method. In numerical examples, the effects of geometric nonlinear, voltage, temperature, as well as volume fraction on the deflection and bending moment of axisymmetrical piezoelectric cylindrical shell reinforced with BNNTs are discussed in detail.
基金supported by the National Basic Research Program of China (2022YFA1603701, 2021YFA1200900)the institutionalized scientific research platform relies on Beijing Synchrotron Radiation Facility of Chinese Academy of Sciences,the Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000)+2 种基金the National Natural Science Foundation of China (22027810, 82341044,22388101 and 22307028)the CAMS Innovation Fund for Medical Sciences(CIFMS 2019-I2M-5-018)the New Cornerstone Science Foundation。
文摘With the advancement of modern science and technology, large scientific facilities are increasingly oriented toward demand and application, and can be used for basic research as well as serving multiple disciplines. Developing large scientific facilities and related analytical technologies enhances understanding of large scientific facilities and popularizes their application in research across multiple disciplines. The combination of light or neutron sources from large scientific facilities and advanced analytical technologies can be achieved for materials structure information, dynamics study of chemical reactions, high dissociation of biomolecules, 3D visualization of energy materials or biological samples, etc. We first introduce the progress of domestic large scientific facilities of synchrotron radiation(SR) and free electron lasers(FELs) with different wavelengths and neutron sources.We further discuss the comparison between Chinese and typical foreign facilities in X-ray radiation from X-ray tubes, synchrotrons, X-ray FELs, and neutron sources based on physical parameters of light and neutron sources. In addition, we focus on the technological progress and perspectives combined with advanced X-ray radiation and neutron sources of large scientific facilities in China, especially in the nanoscience fields of energy catalysis and biological science. We hope that this roadmap will provide references on technology and methods to experimental users, as well as prospects for future development of technologies based on large research infrastructure facilities. Comprehensive studies and guidelines for basic research to practical application in various disciplines can be made with the assistance of large scientific facilities.
基金the National Key Research and Development Program of China(No.2020YFA0405800)the National Natrual Science Foundation of China(Nos.U1932201,U2032113,and 22075264)+2 种基金CAS Collaborative Innovation Program of Hefei Science Center(No.2020HSC-CIP002)CAS Interdisciplinary Innovation Team,and USTC Research Funds of the Double First-Class Initiative(No.YD2310002003)L.S.also thanks the financial support from State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,College of Chemistry,Jilin University.
文摘The electrocatalysis of oxygen evolution reaction(OER)plays a key role in clean energy storage and transfer.Nonetheless,the sluggish kinetics and poor durability under acidic and neutral conditions severely hinder practical applications such as electrolyzer compatible with the powerful proton exchange membrane and biohybrid fuel production.Here,we report a borondoped ruthenium dioxide electrocatalyst(B-RuO_(2))fabricated by a facile boric acid assisted strategy which demonstrates excellent acidic and neutral OER performances.Density functional theory calculations and advanced characterizations reveal that the boron species form an anomalous B–O covalent bonding with the oxygen atoms of RuO_(2)and expose the fully coordinately bridge ruthenium site(Ru-bri site),which seems like a switch that turns on the inactive Ru-bri site into OER-active,resulting in more exposed active sites,modified electronic structure,and optimized binding energy of intermediates.Thus,the B-RuO_(2)exhibits an ultralow overpotential of 200 mV at 10 mA/cm^(2)and maintains excellent stability compared to commercial RuO_(2)in 0.5 M sulfuric acid.Moreover,the superior performance is as well displayed in neutral electrolyte,surpassing most previously reported catalysts.
基金supported by the Natural Science Research Project for Universities in Anhui Province(No.KJ2021ZD0006)the Natural Science Foundation of Anhui Province(No.2208085MB21)+3 种基金the Fundamental Research Funds for the Central Universities of China(No.PA2022GDSK0056)the University Synergy Innovation Program of Anhui Province(Nos.GXXT-2020-073 and GXXT-2020-074),the National Key R&D Program of China(No.2020YFA0406103)the National Natural Science Foundation of China(Nos.21725102,91961106,91963108,and 22175165)Singapore National Research Foundation under NRF RF Award No.Tier 12017-T1-001-075.
文摘Sodium-ion batteries(SIBs)are considered the most up-and-coming complements for large-scale energy storage devices due to the abundance and cheap sodium.However,due to the bigger radius,it is still a great challenge to develop anode materials with suitable space for the intercalation of sodium ions.Herein,we present hard carbon microtubes(HCTs)with tunable apertures derived from low-cost natural kapok fibers via a carbonization process for SIBs.The resulted HCTs feature with smaller surface area and shorter Na+diffusion path benefitting from their unique micro-nano structure.Most importantly,the wall thickness of HCTs could be regulated and controlled by the carbonization temperature.At a high temperature of 1,600℃,the carbonized HCTs possess the smallest wall thickness,which reduces the diffusion barrier of Na+and enhances the reversibility Na+storage.As a result,the 1600HCTs deliver a high initial Coulombic efficiency of 90%,good cycling stability(89.4%of capacity retention over 100 cycles at 100 mA·g^(−1)),and excellent rate capacity.This work not only charts a new path for preparing hard carbon materials with adequate ion channels and novel tubular micro-nano structures but also unravels the mechanism of hard carbon materials for sodium storage.
基金the National Key R&D Program of China(Nos.2020YFA0405800 and 2017YFA0303500)the National Natural Science Foundation of China(NSFC)(Nos.U1932201,and 21727801)+2 种基金the International Partnership Program of The Chinese Academy of Sciences(CAS)(No.211134KYSB20190063)the CAS Collaborative Innovation Program of Hefei Science Center(No.2019HSC-CIP002)the University Synergy Innovation Program of Anhui Province(No.GXXT-2020-002)。
文摘Taking advantage of the unique layered structure of TiSe2,the intrinsic electronic properties of two-dimensional materials can easily be tuned via heteroatomic engineering.Herein,we show that the charge density wave(CDW)phase in 1T-TiSe_(2) single-crystals can be gradually suppressed through Sn atoms intercalation.Using angle-resolved photoemission spectroscopy(ARPES)and temperature-dependent resistivity measurements,this work reveals that Sn atoms can induce charge doping and modulate the intrinsic electronic properties in the host 1T-TiSe_(2).Notably,our temperature-dependent ARPES results highlight the role exciton-phonon interaction and the Jahn-Teller mechanism through the formation of backfolded bands and exhibition of a downward Se shift of 4p valence band in the formation of CDW in this material.
基金support from the National Key Research and Development Program of China(Nos.2020YFA0405800,2019YFA0405601)the National Natural Science Foundation of China(NSFC)(Nos.U1932201,U2032113)+4 种基金the Youth Innovation Promotion Association of CAS(No.2022457)USTC Research Funds of the Double First-Class Initiative(No.YD2310002003)the Fundamental Research Funds for the Central Universities(Nos.WK2060000039,WK2310000088),Institute of Energy,Hefei Comprehensive National Science Center,University Synergy Innovation Program of Anhui Province(No.GXXT-2020-002)Collaborative Innovation Program of Hefei Science Center,CAS(No.2021HSC-CIP016)C.D.W.(No.202006340190)acknowledge financial support from the China Scholarship Council(CSC).L.S.acknowledges support from the Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education).
文摘“Intrinsic”strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance.Nevertheless,the structure–activity relationship between defects and charge storage is ambiguous,which may be revealed by constructing highly ordered vacancy structures.Herein,we demonstrate molybdenum carbide MXene nanosheets with customized in-plane chemical ordered vacancies(Mo_(1.33)CT_(x)),by utilizing selective etching strategies.Synchrotron-based X-ray characterizations reveal that Mo atoms in Mo1.33CTx show increased average valence of+4.44 compared with the control Mo_(2)CT_(x).Benefited from the introduced atomic active sites and high valence of Mo,Mo_(1.33)CT_(x)achieves an outstanding capacity of 603 mAh·g^(−1)at 0.2 A·g^(−1),superior to most original MXenes.Li+storage kinetics analysis and density functional theory(DFT)simulations show that this optimized performance ensues from the more charge compensation during charge–discharge process,which enhances Faraday reaction compared with pure Mo_(2)CT_(x).This vacancy manipulation provides an efficient way to realize MXene’s potential as promising electrodes.
基金financially supported in part by the National Key Research and Development Program of China(No.2020YFA0405800)the National Natural Science Foundation of China(NSFC,Nos.U1932201 and U2032113)+4 种基金Youth Innovation Promotion Association of Chinese Academy of Sciences(CAS)(No.2022457)CAS Collaborative Innovation Program of Hefei Science Center(No.2020HSC-CIP002)CAS International Partnership Program(No.211134KYSB20190063)the Fundamental Research Funds for the Central Universities(No.WK2060000039)L.S.acknowledges the support from the Institute of Energy,Hefei Comprehensive National Science Center,University Synergy Innovation Program of Anhui Province(No.GXXT-2020-002).
文摘Transition metal selenides have aroused great attention in recent years due to their high theoretical capacity.However,the huge volume fluctuation generated by conversion reaction during the charge/discharge process results in the significant electrochemical performance reduction.Herein,the carbon-regulated copper(I)selenide(Cu_(2)Se@C)is designed to significantly promote the interface stability and ion diffusion for selenide electrodes.The systematic X-ray spectroscopies characterizations and density functional theory(DFT)simulations reveal that the Cu–Se–C bonding forming on the surface of Cu2Se not only improves the electronic conductivity of Cu_(2)Se@C but also retards the volume change during electrochemical cycling,playing a pivotal role in interface regulation.Consequently,the storage kinetics of Cu_(2)Se@C is mainly controlled by the capacitance process diverting from the ion diffusion-controlled process of Cu2Se.When employed this distinctive Cu_(2)Se@C as anode active material in Li coin cell configuration,the ultrahigh specific capacity of 810.3 mA·h·g^(−1)at 0.1 A·g^(−1)and the capacity retention of 83%after 1,500 cycles at 5 A·g^(−1)is achieved,implying the best Cu-based Li^(+)-storage capacity reported so far.This strategy of heterojunction combined with chemical bonding regulation opens up a potential way for the development of advanced electrodes for battery storage systems.