The measurement of the pairing gap is crucial for investigating the physical properties of superconductors or superfluids.We propose a strategy to measure the pairing gap through the dynamical excitations.With the ran...The measurement of the pairing gap is crucial for investigating the physical properties of superconductors or superfluids.We propose a strategy to measure the pairing gap through the dynamical excitations.With the random phase approximation(RPA),we study the dynamical excitations of a two-dimensional attractive Fermi-Hubbard model by calculating its dynamical structure factor.Two distinct collective modes emerge:a Goldstone phonon mode at transferred momentum q=[0,0]and a roton mode at q=[p,p].The roton mode exhibits a sharp molecular peak in the low-energy regime.Notably,the area under the roton molecular peak scales with the square of the pairing gap,which holds even in three-dimensional and spin-orbit coupled(SOC)optical lattices.This finding suggests an experimental approach to measure the pairing gap in lattice systems by analyzing the dynamical structure factor at q=[p,p].展开更多
Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hap...Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hapln1 in the dedifferentiation and proliferation of cardiomyocytes and its therapeutic value in myocardial infarction with human induced pluripotent stem cell(hiPSC)-derived cardiomyocytes(CMs)and an adult mouse model of myocardial infarction.HiPSC-CMs and adult mice with myocardial infarction were used as in vitro and in vivo models,respectively.Previous single-cell RNA sequencing data were retrieved for bioinformatic exploration.The results showed that recombinant human Hapln1(rhHapln1)promotes the proliferation of hiPSC-CMs in a dose-dependent manner.As a physical binding protein of Hapln1,versican interacted with Nodal growth differentiation factor(NODAL)and growth differentiation factor 11(GDF11).GDF11,but not NODAL,was expressed by hiPSC-CMs.GDF11 expression was unaffected by rhHapln1 treatment.However,this molecule was required for rhHapln1-mediated activation of the transforming growth factor(TGF)-β/Drosophila mothers against decapentaplegic protein(SMAD)2/3 signaling in hiPSC-CMs,which stimulates cell dedifferentiation and proliferation.Recombinant mouse Hapln1(rmHapln1)could induce cardiac regeneration in the adult mouse model of myocardial infarction.In addition,rmHapln1 induced hiPSC-CM proliferation.In conclusion,Hapln1 can stimulate the dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping and subsequent activation of the TGF-β/SMAD2/3 signaling pathway.Hapln1 might be an effective hiPSC-CM dedifferentiation and proliferation agent and a potential reagent for repairing damaged hearts.展开更多
The solar coronal magnetic field is a pivotal element in the study of eruptive phenomena, and understanding its dynamic evolution has long been a focal point in solar physics. Numerical models, driven directly by obse...The solar coronal magnetic field is a pivotal element in the study of eruptive phenomena, and understanding its dynamic evolution has long been a focal point in solar physics. Numerical models, driven directly by observation data, serve as indispensable tools in investigating the dynamics of the coronal magnetic field. This paper presents a new approach to electric field inversion, which involves modifying the electric field derived from the DAVE4VM velocity field using ideal Ohm's law. The time series of the modified electric field is used as a boundary condition to drive a magnetohydrodynamics model, which is applied to simulate the magnetic field evolution of active region12673. The simulation results demonstrate that our method enhances the magnetic energy injection through the bottom boundary, as compared with energy injection calculated directly from the DAVE4VM code, and reproduces the evolution of the photospheric magnetic flux. The coronal magnetic field structure is also in morphological similarity to the coronal loops. This new approach will be applied to the high-accuracy simulation of eruption phenomena and provide more details on the dynamical evolution of the coronal magnetic field.展开更多
This study investigates the performance of a natural draft dry cooling tower group in crosswind conditions through numerical analysis.A comprehensive three-dimensional model is developed to analyze the steady-state an...This study investigates the performance of a natural draft dry cooling tower group in crosswind conditions through numerical analysis.A comprehensive three-dimensional model is developed to analyze the steady-state and dynamic behavior of the towers.The impact of wind speed and direction on heat rejection capacity and flow patterns is examined.Results indicate that crosswinds negatively affect the overall heat transfer capacity,with higher crosswind speeds leading to decreased heat transfer.Notably,wind direction plays a significant role,particularly at 0°.Moreover,tower response time increases with higher crosswind speeds due to increased turbulence and the formation of vortices.The response times are generally similar for wind directions of 45°and 90°,but differ when facing 0,where the leeward tower exhibits a shorter response time compared to the windward tower.These findings provide valuable insights into the performance of natural draft dry cooling tower groups under crosswind conditions,which can inform the design and operation of similar systems in practical applications.展开更多
Background:This study aimed to investigate whether the combination of Macleaya cordata extract(MCE)and Bacil-lus could improve the laying performance and health of laying hens better.Methods:A total of 36029-week-old ...Background:This study aimed to investigate whether the combination of Macleaya cordata extract(MCE)and Bacil-lus could improve the laying performance and health of laying hens better.Methods:A total of 36029-week-old Jingbai laying hens were randomly divided into 4 treatments:control group(basal diet),MCE group(basal diet+MCE),Probiotics Bacillus Compound(PBC)group(basal diet+compound Bacil-lus),MCE+PBC group(basal diet+MCE+compound Bacillus).The feeding experiment lasted for 42 d.Results:The results showed that the laying rate and the average daily egg mass in the MCE+PBC group were significantly higher than those in the control group(P<0.05)and better than the MCE and PBC group.Combina-tion of MCE and Bacillus significantly increased the content of follicle-stimulating hormone(FSH)in the serum and up-regulated the expression of related hormone receptor gene(estrogen receptor-β,FSHR and luteinizing hormone/choriogonadotropin receptor)in the ovary of laying hens(P<0.05).In the MCE+PBC group,the mRNA expressions of zonula occluden-1,Occludin and mucin-2 in jejunum was increased and the intestinal epithelial barrier detected by transmission electron microscopy was enhanced compared with the control group(P<0.05).In addition,compared with the control group,combination of MCE and Bacillus significantly increased the total antioxidant capacity and catalase activity(P<0.05),and down-regulated the mRNA expressions of inflammation-related genes(interleukin-1βand tumor necrosis factor-α)as well as apoptosis-related genes(Caspase 3,Caspase 8 and P53)(P<0.05).The concen-tration of acetic acid and butyric acid in the cecum content of laying hens in the MCE+PBC group was significantly increased compared with the control group(P<0.05).Conclusions:Collectively,dietary supplementation of 600μg/kg MCE and 5×108 CFU/kg compound Bacillus can improve laying performance by improving microbiota to enhance antioxidant capacity and intestinal barrier,regulate reproductive hormones and the concentration of cecal short-chain fatty acids of laying hens,and the combined effect of MCE and Bacillus is better than that of single supplementation.展开更多
This paper reports the modeling method and outcomes of mechanical performance and damage evolution of single-lap bolted composite interference-fit joints under extreme temperatures.The anisotropic continuum damage mod...This paper reports the modeling method and outcomes of mechanical performance and damage evolution of single-lap bolted composite interference-fit joints under extreme temperatures.The anisotropic continuum damage model involving thermal effects is established on continuum damage mechanics which integrates the shear nonlinearity constitutive relations characterized by Romberg-Osgood equation.The temperature-induced modification of thermal strains and material properties is incorporated in stress-strain analysis,extended 3 D failure criteria and exponential damage evolution rules.The proposed model is calibrated and employed to simulate behavior of composite joints in interference fitting,bolt preloading,thermal and bearing loading processes,during which the influence of interference-fit sizes,preload levels,laminate layups and service temperatures is thoroughly investigated.The predicated interfacial behavior,bearing response and failure modes are in good agreement with experimental tests.The numerical model is even capable of reflecting some non-intuitive experimental findings such as residual stress relaxation and matrix softening at elevated temperatures.展开更多
A holy grail in neuroscience is to understand how brain functions arise from neural network-level electrical activities. Voltage imaging allows for the direct visualization of electrical signaling at high spatial and ...A holy grail in neuroscience is to understand how brain functions arise from neural network-level electrical activities. Voltage imaging allows for the direct visualization of electrical signaling at high spatial and temporal resolutions across a large neuronal population. Central to this technique is a palette of genetically-encoded fluorescent probes with fast and sensitive voltage responses. In this review, we chronicle the development and applications of genetically-encoded voltage indicators(GEVIs) over the past two decades, with a primary focus on the structural design that harness the power of fluctuating transmembrane electric fields. We hope this article will inform chemical biologists and protein engineers of the GEVI history and inspire novel design ideas.展开更多
We proposed two kinds of visible light communication(VLC)systems which respectively based on 64QAM/square geometrical shaping(SGS)128QAM time domain hybrid modulation scheme(SGSHY)and 64QAM/128QAM time domain hybrid m...We proposed two kinds of visible light communication(VLC)systems which respectively based on 64QAM/square geometrical shaping(SGS)128QAM time domain hybrid modulation scheme(SGSHY)and 64QAM/128QAM time domain hybrid modulation scheme(REGHY).These two systems can operate around specific forward error correction(FEC)threshold and maximize the achievable information rate(AIR)of the system.The principles of SGSHY and REGHY are proposed in detail,which has very low computation complexity compared with probabilistic shaping.The SGSHY outperforms REGHY at high peak to peak voltage(Vpp).Experimental results show that at high Vpp like 1.4V,which means the system is suffering from high nonlinear distortion,the AIR of SGSHY outperforms that of REGHY by 0.12Gb/s at the 2×10-2 FEC threshold.The AIR of the REGHY is at most 0.36Gb/s higher than that of 64QAM at 0.8V Vpp and 7%FEC threshold,while the(achievable information rate)AIR of SGSHY is at most 0.40Gb/s higher than that of 64QAM at 1.4V Vpp and 20%FEC threshold.展开更多
In this paper,we prepared the nanoparticle drug carrier system between nanoparticles chitosan and Epigallocatechin-3 O-gallate(EGCG)for breast cancer cell inhibiting application.For this drug carrier system,chitosan a...In this paper,we prepared the nanoparticle drug carrier system between nanoparticles chitosan and Epigallocatechin-3 O-gallate(EGCG)for breast cancer cell inhibiting application.For this drug carrier system,chitosan acts as a carrier and EGOG as a drug.Which were systematically characterized and thoroughly evaluated in terms of their inhibition rate and biocompatibility.We also did a cell scratch test and the result indicated that the chitosan EGCG nanoparticles have inhibitory effect on the growth of breast cancer cells.The inhibition rate could reach up to 21.91%.This work revealed that the modification of nanopartidles paved a way for specific biomedical applications.展开更多
Metals have been used for wound treatment and toxicity testing since ancient times.With the development of nanotechnology,metal oxides have been proven to have excellent sterilization and disinfection functions.Howeve...Metals have been used for wound treatment and toxicity testing since ancient times.With the development of nanotechnology,metal oxides have been proven to have excellent sterilization and disinfection functions.However,the rapid bacterial inactivation efficiency and trapping physicochemical killing ability remain simultaneously undemonstrated in antibacterial nanohybrids.Here,we demonstrate a method for in-situ reduction of small-sized Cu_(2)O particles on one-dimensional inorganic halloysite nanotubes(HNTs).The resultant Cu_(2)O@HNTs hybrids not only give Cu_(2)O excellent dispersibility,but also exert the synergistic effect of the charge adsorption of metal oxides and the physical piercing effect of the small-sized nanotubes.Furthermore,the release of Cu^(2+)from hybrids damages cell membranes and denatures proteins and DNA.Through this sterilization mechanism,Cu_(2)O@HNTs allow for the inactivation rate of Escherichia coli to reach 94.5%within 2 min and complete inactivation within 10 min.This excellent sterilization mode makes Cu_(2)O@HNTs exhibit excellent broad-spectrum antibacterial activity and inactivation efficiency,while shows weak cytotoxicity.These hybrids were further applied in the processing of functional antibacterial fibers and fabrics.Thus,we believe that this excellent antibacterial hybrid is practically attractive in this critical time of the COVID-19 pandemic.展开更多
We observed an Hα surge that occurred in NOAA Active Region 12401 on 2015 August 17, and we discuss its trigger mechanism, and kinematic and thermal properties. It is suggested that this surge was caused by a chromos...We observed an Hα surge that occurred in NOAA Active Region 12401 on 2015 August 17, and we discuss its trigger mechanism, and kinematic and thermal properties. It is suggested that this surge was caused by a chromospheric reconnection which ejected cool and dense material with transverse velocity of about 21–28 km s-1 and initial Doppler velocity of 12 km s^-1. This surge is similar to the injection of newly formed filament materials from their footpoints, except that the surge here occurred in a relatively weak magnetic environment of 100 G. Thus, we discuss the possibility of filament material replenishment via the erupting mass in such a weak magnetic field, which is often associated with quiescent filaments. It is found that the local plasma can be heated up to about 1.3 times the original temperature, which results in an acceleration of about –0.017 km s^-2. It can lift the dense material up to 10 Mm and higher with an inclination angle smaller than 50°, namely the typical height of active region filaments, but it can hardly inject the material up to those filaments higher than 25 Mm, like some quiescent filaments. Thus, we think that the injection model does not work well in describing the formation of quiescent filaments.展开更多
PLGA, m PEG diblock copolymer was synthesized by bulk ring-opening polymerization method. The double emulsion solvent evaporation method was used to prepare bovine serum albumin(BSA)-loaded microspheres. Optical mic...PLGA, m PEG diblock copolymer was synthesized by bulk ring-opening polymerization method. The double emulsion solvent evaporation method was used to prepare bovine serum albumin(BSA)-loaded microspheres. Optical microscopy was used to observe the whole microsphere fabrication process. It is confirmed that the proportion of inner aqueous phase is one of the most critical factors that determines the morphology of microspheres. Double emulsion droplets which have appropriate amount of inner aqueous phase can form closed and dense microspheres, while, too much inner aqueous phase will cause a collapse of the double emulsion droplets, resulting in a loss of drug. The proportion of inner aqueous phase was varied to prepare microspheres of different morphology. The results show that with increasing the amount of inner aqueous phase, a higher percent of broken microspheres and lower encapsulation efficiency appeared, and also, a more severe initial burst release and faster release rate.展开更多
Visible-light communication(VLC)stands as a promising component of the future communication network by providing high-capacity,low-latency,and high-security wireless communication.Superluminescent diode(SLD)is propose...Visible-light communication(VLC)stands as a promising component of the future communication network by providing high-capacity,low-latency,and high-security wireless communication.Superluminescent diode(SLD)is proposed as a new light emitter in the VLC system due to its properties of droop-free emission,high optical power density,and low speckle-noise.In this paper,we analyze a VLC system based on SLD,demonstrating effective implementation of carrierless amplitude and phase modulation(CAP).We create a low-complexity memory-polynomial-aided neural network(MPANN)to replace the traditional finite impulse response(FIR)post-equalization filters of CAP,leading to significant mitigation of the linear and nonlinear distortion of the VLC channel.The MPANN shows a gain in Q factor of up to 2.7 dB higher than other equalizers,and more than four times lower complexity than a standard deep neural network(DNN),hence,the proposed MPANN opens a pathway for the next generation of robust and efficient neural network equalizers in VLC.We experimentally demonstrate a proof-of-concept 2.95-Gbit/s transmission using MPANN-aided CAP with 16-quadrature amplitude modulation(16-QAM)through a 30-cm channel based on the 442-nm blue SLD emitter.展开更多
MicroRNAs(miRNAs) are gene regulators involved in numerous diseases including cancer,heart disease,neurological disorders,vascular abnormalities and autoimmune conditions.Although hsa-mir-499 rs3746444 polymorphism ...MicroRNAs(miRNAs) are gene regulators involved in numerous diseases including cancer,heart disease,neurological disorders,vascular abnormalities and autoimmune conditions.Although hsa-mir-499 rs3746444 polymorphism was shown to contribute to the susceptibility of multiple genes to cancer,the data have yielded conflicting results.Therefore,this meta-analysis was performed to provide a comprehensive assessment of potential association between hsa-mir-499 rs3746444 polymorphism and cancer risk.In this meta-analysis,a total of 9 articles regarding 10 eligible case-control studies in English(including 6134 cases and 7141 controls) were analyzed.No significant association between hsa-mir-499 rs3746444 polymorphism and overall cancer risk was demonstrated.However,an increased risk was observed in the subgroup of breast cancer patients(G allele vs A allele:OR = 1.10,95% CI = 1.00-1.20;P heterogeneity = 0.114;I 2 = 53.9%) and population-based studies(G allele vs A allele:OR = 1.12,95% CI = 1.00-1.25;P heterogeneity = 0.062;I 2 = 64.0%).The findings suggested an association between hsa-mir-499 rs3746444 polymorphism and increased risk to breast cancer.展开更多
Action potentials(APs)in neurons are generated at the axon initial segment(AIS).AP dynamics,including initiation and propagation,are intimately associated with neuronal excitability and neurotransmitter release kineti...Action potentials(APs)in neurons are generated at the axon initial segment(AIS).AP dynamics,including initiation and propagation,are intimately associated with neuronal excitability and neurotransmitter release kinetics.Most learning and memory studies at the single-neuron level have relied on the use of animal models,most notably rodents.Here,we studied AP initiation and propagation in cultured hippocampal neurons from Sprague-Dawley(SD)rats and C57BL/6(C57)mice with genetically encoded voltage indicator(GEVI)-based voltage imaging.Our data showed that APs traveled bidirectionally in neurons from both species;forward-propagating APs(fpAPs)had a different speed than backpropagating APs(bpAPs).Additionally,we observed distinct AP propagation characteristics in AISs emerging from the somatic envelope compared to those originating from dendrites.Compared with rat neurons,mouse neurons exhibited higher bpAP speed and lower fpAP speed,more distally located ankyrin G(AnkG)in AISs,and longer Nav1.2 lengths in AISs.Moreover,during AIS plasticity,AnkG and Nav1.2 showed distal shifts in location and shorter lengths of labeled AISs in rat neurons;in mouse neurons,however,they showed a longer AnkG-labeled length and more distal Nav1.2 location.Our findings suggest that hippocampal neurons in SD rats and C57 mice may have different AP propagation speeds,different AnkG and Nav1.2 patterns in the AIS,and different AIS plasticity properties,indicating that comparisons between these species must be carefully considered.展开更多
The back-propagating action potential(bpAP)is crucial for neuronal signal integration and synaptic plasticity in dendritic trees.Its properties(velocity and amplitude)can be affected by dendritic morphology.Due to lim...The back-propagating action potential(bpAP)is crucial for neuronal signal integration and synaptic plasticity in dendritic trees.Its properties(velocity and amplitude)can be affected by dendritic morphology.Due to limited spatial resolution,it has been difficult to explore the specific propagation process of bpAPs along dendrites and examine the influence of dendritic morphology,such as the dendrite diameter and branching pattern,using patch-clamp recording.By taking advantage of Optopatch,an all-optical electrophysiological method,we made detailed recordings of the real-time propagation of bpAPs in dendritic trees.We found that the velocity of bpAPs was not uniform in a single dendrite,and the bpAP velocity differed among distinct dendrites of the same neuron.The velocity of a bpAP was positively correlated with the diameter of the dendrite on which it propagated.In addition,when bpAPs passed through a dendritic branch point,their velocity decreased significantly.Similar to velocity,the amplitude of bpAPs was also positively correlated with dendritic diameter,and the attenuation patterns of bpAPs differed among different dendrites.Simulation results from neuron models with different dendritic morphology corresponded well with the experimental results.These findings indicate that the dendritic diameter and branching pattern significantly influence the properties of bpAPs.The diversity among the bpAPs recorded in different neurons was mainly due to differences in dendritic morphology.These results may inspire the construction of neuronal models to predict the propagation of bpAPs in dendrites with enormous variation in morphology,to further illuminate the role of bpAPs in neuronal communication.展开更多
SARS-CoV-2 has caused more than 3.8 million deaths worldwide,and several types of COVID-19 vaccines are urgently approved for use,including adenovirus vectored vaccines.However,the thermal instability and pre-existing...SARS-CoV-2 has caused more than 3.8 million deaths worldwide,and several types of COVID-19 vaccines are urgently approved for use,including adenovirus vectored vaccines.However,the thermal instability and pre-existing immunity have limited its wide applications.To circumvent these obstacles,we constructed a self-biomineralized adenovirus vectored COVID-19 vaccine(Sad23L-n Co V-S-Ca P)by generating a calcium phosphate mineral exterior(Ca P)based on Sad23L vector carrying the full-length gene of SARS-Co V-2 spike protein(S)under physiological condition.This Sad23L-n Co V-S-Ca P vaccine was examined for its characteristics of structure,thermostability,immunogenicity and avoiding the problem of preexisting immunity.In thermostability test,Sad23L-n Co V-S-Ca P could be stored at 4°C for over 45 days,26°C for more than 8 days and 37°C for approximately 2 days.Furthermore,Sad23L-n Co V-S-Ca P induced higher level of S-specific antibody and T cell responses,and was not affected by the pre-existing anti-Sad23L immunity,suggesting it could be used as boosting immunization on Sad23L-n Co V-S priming vaccination.The boosting with Sad23L-n Co V-S-Ca P vaccine induced high titers of 10^(5.01)anti-S1,10^(4.77)anti-S2 binding antibody,10^(3.04) pseudovirus neutralizing antibody(IC_(50)),and robust T-cell response of IFN-c(1466.16 SFCs/10^(6)cells)to S peptides,respectively.In summary,the selfbiomineralization of the COVID-19 vaccine Sad23L-n Co V-S-Ca P improved vaccine efficacy,which could be used in prime-boost regimen for prevention of SARS-Co V-2 infection in humans.展开更多
The rapid rise of artificial intelligence(AI)has catalyzed advancements across various trades and professions.Developing large-scale AI models is now widely regarded as one of the most viable approaches to achieving g...The rapid rise of artificial intelligence(AI)has catalyzed advancements across various trades and professions.Developing large-scale AI models is now widely regarded as one of the most viable approaches to achieving general-purpose intelligent agents.This pressing demand has made the development of more advanced computing accelerators an enduring goal for the rapid realization of large-scale AI models.However,as transistor scaling approaches physical limits,traditional digital electronic accelerators based on the von Neumann architecture face significant bottlenecks in energy consumption and latency.Optical computing accelerators,leveraging the high bandwidth,low latency,low heat dissipation,and high parallelism of optical devices and transmission over waveguides or free space,offer promising potential to overcome these challenges.In this paper,inspired by the generic architectures of digital electronic accelerators,we conduct a bottom-up review of the principles and applications of optical computing accelerators based on the basic element of computing accelerators–the multiply-accumulate(MAC)unit.Then,we describe how to solve matrix multiplication by composing calculator arrays from different MAC units in diverse architectures,followed by a discussion on the two main applications where optical computing accelerators are reported to have advantages over electronic computing.Finally,the challenges of optical computing and our perspective on its future development are presented.Moreover,we also survey the current state of optical computing in the industry and provide insights into the future commercialization of optical computing.展开更多
基金supported by the National Natural Science Foundation of China[Grant Nos.U23A2073(P.Z.)and 11547034(H.Z.)].
文摘The measurement of the pairing gap is crucial for investigating the physical properties of superconductors or superfluids.We propose a strategy to measure the pairing gap through the dynamical excitations.With the random phase approximation(RPA),we study the dynamical excitations of a two-dimensional attractive Fermi-Hubbard model by calculating its dynamical structure factor.Two distinct collective modes emerge:a Goldstone phonon mode at transferred momentum q=[0,0]and a roton mode at q=[p,p].The roton mode exhibits a sharp molecular peak in the low-energy regime.Notably,the area under the roton molecular peak scales with the square of the pairing gap,which holds even in three-dimensional and spin-orbit coupled(SOC)optical lattices.This finding suggests an experimental approach to measure the pairing gap in lattice systems by analyzing the dynamical structure factor at q=[p,p].
基金Shaanxi Province Natural Science Foundation,China(Grant No.:2021JM-568).
文摘Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hapln1 in the dedifferentiation and proliferation of cardiomyocytes and its therapeutic value in myocardial infarction with human induced pluripotent stem cell(hiPSC)-derived cardiomyocytes(CMs)and an adult mouse model of myocardial infarction.HiPSC-CMs and adult mice with myocardial infarction were used as in vitro and in vivo models,respectively.Previous single-cell RNA sequencing data were retrieved for bioinformatic exploration.The results showed that recombinant human Hapln1(rhHapln1)promotes the proliferation of hiPSC-CMs in a dose-dependent manner.As a physical binding protein of Hapln1,versican interacted with Nodal growth differentiation factor(NODAL)and growth differentiation factor 11(GDF11).GDF11,but not NODAL,was expressed by hiPSC-CMs.GDF11 expression was unaffected by rhHapln1 treatment.However,this molecule was required for rhHapln1-mediated activation of the transforming growth factor(TGF)-β/Drosophila mothers against decapentaplegic protein(SMAD)2/3 signaling in hiPSC-CMs,which stimulates cell dedifferentiation and proliferation.Recombinant mouse Hapln1(rmHapln1)could induce cardiac regeneration in the adult mouse model of myocardial infarction.In addition,rmHapln1 induced hiPSC-CM proliferation.In conclusion,Hapln1 can stimulate the dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping and subsequent activation of the TGF-β/SMAD2/3 signaling pathway.Hapln1 might be an effective hiPSC-CM dedifferentiation and proliferation agent and a potential reagent for repairing damaged hearts.
基金supported by the National Natural Science Foundation of China (NSFC 42174200)Shenzhen Science and Technology Program (grant No. RCJC20210609 104422048)+2 种基金Shenzhen Key Laboratory Launching Project (No. ZDSYS20210702140800001)Guangdong Basic and Applied Basic Research Foundation (2023B1515040021)the Fundamental Research Funds for the Central Universities (grant No. HIT.OCEF.2023047)。
文摘The solar coronal magnetic field is a pivotal element in the study of eruptive phenomena, and understanding its dynamic evolution has long been a focal point in solar physics. Numerical models, driven directly by observation data, serve as indispensable tools in investigating the dynamics of the coronal magnetic field. This paper presents a new approach to electric field inversion, which involves modifying the electric field derived from the DAVE4VM velocity field using ideal Ohm's law. The time series of the modified electric field is used as a boundary condition to drive a magnetohydrodynamics model, which is applied to simulate the magnetic field evolution of active region12673. The simulation results demonstrate that our method enhances the magnetic energy injection through the bottom boundary, as compared with energy injection calculated directly from the DAVE4VM code, and reproduces the evolution of the photospheric magnetic flux. The coronal magnetic field structure is also in morphological similarity to the coronal loops. This new approach will be applied to the high-accuracy simulation of eruption phenomena and provide more details on the dynamical evolution of the coronal magnetic field.
基金Key Laboratory of Low-Grade Energy Utilization Technologies and Systems(LLEUTS-2023001)the Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX1470).
文摘This study investigates the performance of a natural draft dry cooling tower group in crosswind conditions through numerical analysis.A comprehensive three-dimensional model is developed to analyze the steady-state and dynamic behavior of the towers.The impact of wind speed and direction on heat rejection capacity and flow patterns is examined.Results indicate that crosswinds negatively affect the overall heat transfer capacity,with higher crosswind speeds leading to decreased heat transfer.Notably,wind direction plays a significant role,particularly at 0°.Moreover,tower response time increases with higher crosswind speeds due to increased turbulence and the formation of vortices.The response times are generally similar for wind directions of 45°and 90°,but differ when facing 0,where the leeward tower exhibits a shorter response time compared to the windward tower.These findings provide valuable insights into the performance of natural draft dry cooling tower groups under crosswind conditions,which can inform the design and operation of similar systems in practical applications.
基金supported by the National Natural Science Foundation of China(No.32072766,31672460,31472128)Natural Science Foundation of Zhejiang province(No.LZ20C170002)the National High-Tech R&D Program Project(863)of China(NO.2013AA102803D).
文摘Background:This study aimed to investigate whether the combination of Macleaya cordata extract(MCE)and Bacil-lus could improve the laying performance and health of laying hens better.Methods:A total of 36029-week-old Jingbai laying hens were randomly divided into 4 treatments:control group(basal diet),MCE group(basal diet+MCE),Probiotics Bacillus Compound(PBC)group(basal diet+compound Bacil-lus),MCE+PBC group(basal diet+MCE+compound Bacillus).The feeding experiment lasted for 42 d.Results:The results showed that the laying rate and the average daily egg mass in the MCE+PBC group were significantly higher than those in the control group(P<0.05)and better than the MCE and PBC group.Combina-tion of MCE and Bacillus significantly increased the content of follicle-stimulating hormone(FSH)in the serum and up-regulated the expression of related hormone receptor gene(estrogen receptor-β,FSHR and luteinizing hormone/choriogonadotropin receptor)in the ovary of laying hens(P<0.05).In the MCE+PBC group,the mRNA expressions of zonula occluden-1,Occludin and mucin-2 in jejunum was increased and the intestinal epithelial barrier detected by transmission electron microscopy was enhanced compared with the control group(P<0.05).In addition,compared with the control group,combination of MCE and Bacillus significantly increased the total antioxidant capacity and catalase activity(P<0.05),and down-regulated the mRNA expressions of inflammation-related genes(interleukin-1βand tumor necrosis factor-α)as well as apoptosis-related genes(Caspase 3,Caspase 8 and P53)(P<0.05).The concen-tration of acetic acid and butyric acid in the cecum content of laying hens in the MCE+PBC group was significantly increased compared with the control group(P<0.05).Conclusions:Collectively,dietary supplementation of 600μg/kg MCE and 5×108 CFU/kg compound Bacillus can improve laying performance by improving microbiota to enhance antioxidant capacity and intestinal barrier,regulate reproductive hormones and the concentration of cecal short-chain fatty acids of laying hens,and the combined effect of MCE and Bacillus is better than that of single supplementation.
基金finically supported by Joint Found for Equipment Advance Research and Aerospace Science and Technology of China(No.6141B061401)Fund for Distinguished Young Scholars in Shaanxi Province of China(No.2018-JC-009)。
文摘This paper reports the modeling method and outcomes of mechanical performance and damage evolution of single-lap bolted composite interference-fit joints under extreme temperatures.The anisotropic continuum damage model involving thermal effects is established on continuum damage mechanics which integrates the shear nonlinearity constitutive relations characterized by Romberg-Osgood equation.The temperature-induced modification of thermal strains and material properties is incorporated in stress-strain analysis,extended 3 D failure criteria and exponential damage evolution rules.The proposed model is calibrated and employed to simulate behavior of composite joints in interference fitting,bolt preloading,thermal and bearing loading processes,during which the influence of interference-fit sizes,preload levels,laminate layups and service temperatures is thoroughly investigated.The predicated interfacial behavior,bearing response and failure modes are in good agreement with experimental tests.The numerical model is even capable of reflecting some non-intuitive experimental findings such as residual stress relaxation and matrix softening at elevated temperatures.
基金supported by the Peking-Tsinghua Center for Life Sciences and the National Natural Science Foundation of China (No.21673009)
文摘A holy grail in neuroscience is to understand how brain functions arise from neural network-level electrical activities. Voltage imaging allows for the direct visualization of electrical signaling at high spatial and temporal resolutions across a large neuronal population. Central to this technique is a palette of genetically-encoded fluorescent probes with fast and sensitive voltage responses. In this review, we chronicle the development and applications of genetically-encoded voltage indicators(GEVIs) over the past two decades, with a primary focus on the structural design that harness the power of fluctuating transmembrane electric fields. We hope this article will inform chemical biologists and protein engineers of the GEVI history and inspire novel design ideas.
文摘We proposed two kinds of visible light communication(VLC)systems which respectively based on 64QAM/square geometrical shaping(SGS)128QAM time domain hybrid modulation scheme(SGSHY)and 64QAM/128QAM time domain hybrid modulation scheme(REGHY).These two systems can operate around specific forward error correction(FEC)threshold and maximize the achievable information rate(AIR)of the system.The principles of SGSHY and REGHY are proposed in detail,which has very low computation complexity compared with probabilistic shaping.The SGSHY outperforms REGHY at high peak to peak voltage(Vpp).Experimental results show that at high Vpp like 1.4V,which means the system is suffering from high nonlinear distortion,the AIR of SGSHY outperforms that of REGHY by 0.12Gb/s at the 2×10-2 FEC threshold.The AIR of the REGHY is at most 0.36Gb/s higher than that of 64QAM at 0.8V Vpp and 7%FEC threshold,while the(achievable information rate)AIR of SGSHY is at most 0.40Gb/s higher than that of 64QAM at 1.4V Vpp and 20%FEC threshold.
基金the support of the National Natural Science Foundation of China(NSFC Nos.61722508 and 11305020)Nanophotonics and Biophotonics Key Laboratory of Jilin Province,P.R.China(20140622009JC)and(14GH005).
文摘In this paper,we prepared the nanoparticle drug carrier system between nanoparticles chitosan and Epigallocatechin-3 O-gallate(EGCG)for breast cancer cell inhibiting application.For this drug carrier system,chitosan acts as a carrier and EGOG as a drug.Which were systematically characterized and thoroughly evaluated in terms of their inhibition rate and biocompatibility.We also did a cell scratch test and the result indicated that the chitosan EGCG nanoparticles have inhibitory effect on the growth of breast cancer cells.The inhibition rate could reach up to 21.91%.This work revealed that the modification of nanopartidles paved a way for specific biomedical applications.
基金financially supported by the National Natural Science Foundation of China(No.52073047)the Program of Shanghai Academic/Technology Research Leader(No.20XD1433700)+3 种基金the International Cooperation Fund of the Science and Technology Commission of Shanghai Municipality(No.20520740800)the Innovation Program of Shanghai Municipal Education Commission(No.2017–01–07–00–03-E00055)the Science and Technology Commission of Shanghai Municipality(No.20JC1414900)the China Postdoctoral Science Foundation(Nos.2019M661323 and 2020TQ0062)。
文摘Metals have been used for wound treatment and toxicity testing since ancient times.With the development of nanotechnology,metal oxides have been proven to have excellent sterilization and disinfection functions.However,the rapid bacterial inactivation efficiency and trapping physicochemical killing ability remain simultaneously undemonstrated in antibacterial nanohybrids.Here,we demonstrate a method for in-situ reduction of small-sized Cu_(2)O particles on one-dimensional inorganic halloysite nanotubes(HNTs).The resultant Cu_(2)O@HNTs hybrids not only give Cu_(2)O excellent dispersibility,but also exert the synergistic effect of the charge adsorption of metal oxides and the physical piercing effect of the small-sized nanotubes.Furthermore,the release of Cu^(2+)from hybrids damages cell membranes and denatures proteins and DNA.Through this sterilization mechanism,Cu_(2)O@HNTs allow for the inactivation rate of Escherichia coli to reach 94.5%within 2 min and complete inactivation within 10 min.This excellent sterilization mode makes Cu_(2)O@HNTs exhibit excellent broad-spectrum antibacterial activity and inactivation efficiency,while shows weak cytotoxicity.These hybrids were further applied in the processing of functional antibacterial fibers and fabrics.Thus,we believe that this excellent antibacterial hybrid is practically attractive in this critical time of the COVID-19 pandemic.
基金supported by the National Natural Science Foundation of China (41731067 and 41822404)Shenzhen Technology Project (JCYJ20170307150645407)+6 种基金the Fundamental Research Funds for the Central Universities (Grant No. HIT.BRETV.201901)the support by China Postdoctoral Science Foundation (2018M641812)support of the US NSF (AGS-1821294)the National Natural Science Foundation of China (11729301)supported by NJIT and US NSF AGS 1821294 grantpartly supported by the Korea Astronomy and Space Science Institute and Seoul National Universitythe strategic priority research program of Chinese Academy of Science (CAS) (Grant No. XDB09000000)
文摘We observed an Hα surge that occurred in NOAA Active Region 12401 on 2015 August 17, and we discuss its trigger mechanism, and kinematic and thermal properties. It is suggested that this surge was caused by a chromospheric reconnection which ejected cool and dense material with transverse velocity of about 21–28 km s-1 and initial Doppler velocity of 12 km s^-1. This surge is similar to the injection of newly formed filament materials from their footpoints, except that the surge here occurred in a relatively weak magnetic environment of 100 G. Thus, we discuss the possibility of filament material replenishment via the erupting mass in such a weak magnetic field, which is often associated with quiescent filaments. It is found that the local plasma can be heated up to about 1.3 times the original temperature, which results in an acceleration of about –0.017 km s^-2. It can lift the dense material up to 10 Mm and higher with an inclination angle smaller than 50°, namely the typical height of active region filaments, but it can hardly inject the material up to those filaments higher than 25 Mm, like some quiescent filaments. Thus, we think that the injection model does not work well in describing the formation of quiescent filaments.
基金financially supported by the Independent Innovation Foundation of Huazhong University of Science and Technology(No.2013ZHYX008)the National Natural Science Foundation of China(No.81370980)
文摘PLGA, m PEG diblock copolymer was synthesized by bulk ring-opening polymerization method. The double emulsion solvent evaporation method was used to prepare bovine serum albumin(BSA)-loaded microspheres. Optical microscopy was used to observe the whole microsphere fabrication process. It is confirmed that the proportion of inner aqueous phase is one of the most critical factors that determines the morphology of microspheres. Double emulsion droplets which have appropriate amount of inner aqueous phase can form closed and dense microspheres, while, too much inner aqueous phase will cause a collapse of the double emulsion droplets, resulting in a loss of drug. The proportion of inner aqueous phase was varied to prepare microspheres of different morphology. The results show that with increasing the amount of inner aqueous phase, a higher percent of broken microspheres and lower encapsulation efficiency appeared, and also, a more severe initial burst release and faster release rate.
基金the National Key Research,Development Program of China(2017YFB0403603)the NSFC project(No.61925104).JAHL,YM,TKN and BSO gratefully acknowledge the financial support from King Abdullah University of Science and Technology(KAUST)through BAS/1/1614-01-01,REP/1/2878-01-01,GEN/1/6607-01-01,and KCR/1/2081-01-01the King Abdullah University of Science and Technology(KAUST)Office of Sponsored Research(OSR)under Award No.OSR-CRG2017-3417.JAHL further acknowledge access to the KAUST Nanofabrication Core Lab for the fabrication of devices.
文摘Visible-light communication(VLC)stands as a promising component of the future communication network by providing high-capacity,low-latency,and high-security wireless communication.Superluminescent diode(SLD)is proposed as a new light emitter in the VLC system due to its properties of droop-free emission,high optical power density,and low speckle-noise.In this paper,we analyze a VLC system based on SLD,demonstrating effective implementation of carrierless amplitude and phase modulation(CAP).We create a low-complexity memory-polynomial-aided neural network(MPANN)to replace the traditional finite impulse response(FIR)post-equalization filters of CAP,leading to significant mitigation of the linear and nonlinear distortion of the VLC channel.The MPANN shows a gain in Q factor of up to 2.7 dB higher than other equalizers,and more than four times lower complexity than a standard deep neural network(DNN),hence,the proposed MPANN opens a pathway for the next generation of robust and efficient neural network equalizers in VLC.We experimentally demonstrate a proof-of-concept 2.95-Gbit/s transmission using MPANN-aided CAP with 16-quadrature amplitude modulation(16-QAM)through a 30-cm channel based on the 442-nm blue SLD emitter.
基金supported by China Natural Science Foundation (No.30901534)Jiangsu Province Natural Science Foundation(No. BK2009444)Grant for the 135 Key Medical Project of Jiangsu Province(No.XK201117)
文摘MicroRNAs(miRNAs) are gene regulators involved in numerous diseases including cancer,heart disease,neurological disorders,vascular abnormalities and autoimmune conditions.Although hsa-mir-499 rs3746444 polymorphism was shown to contribute to the susceptibility of multiple genes to cancer,the data have yielded conflicting results.Therefore,this meta-analysis was performed to provide a comprehensive assessment of potential association between hsa-mir-499 rs3746444 polymorphism and cancer risk.In this meta-analysis,a total of 9 articles regarding 10 eligible case-control studies in English(including 6134 cases and 7141 controls) were analyzed.No significant association between hsa-mir-499 rs3746444 polymorphism and overall cancer risk was demonstrated.However,an increased risk was observed in the subgroup of breast cancer patients(G allele vs A allele:OR = 1.10,95% CI = 1.00-1.20;P heterogeneity = 0.114;I 2 = 53.9%) and population-based studies(G allele vs A allele:OR = 1.12,95% CI = 1.00-1.25;P heterogeneity = 0.062;I 2 = 64.0%).The findings suggested an association between hsa-mir-499 rs3746444 polymorphism and increased risk to breast cancer.
基金supported by the National Science and Technology Innovation 2030-Major Program of “Brain Science and Brain-Like Research”(2022ZD0211800)National Natural Science Foundation of China General Research Grant (81971679, 21727806,31771147)+4 种基金Major Research Grant (91632305, 32088101)Ministry of Science and Technology (2018YFA0507600, 2017YFA0503600)Qidong-PKU SLS Innovation Fund (2016000663)Fundamental Research Funds for the Central Universities and National Key R&D Program of China (2020AAA0105200)sponsored by the Bayer Investigator Award。
文摘Action potentials(APs)in neurons are generated at the axon initial segment(AIS).AP dynamics,including initiation and propagation,are intimately associated with neuronal excitability and neurotransmitter release kinetics.Most learning and memory studies at the single-neuron level have relied on the use of animal models,most notably rodents.Here,we studied AP initiation and propagation in cultured hippocampal neurons from Sprague-Dawley(SD)rats and C57BL/6(C57)mice with genetically encoded voltage indicator(GEVI)-based voltage imaging.Our data showed that APs traveled bidirectionally in neurons from both species;forward-propagating APs(fpAPs)had a different speed than backpropagating APs(bpAPs).Additionally,we observed distinct AP propagation characteristics in AISs emerging from the somatic envelope compared to those originating from dendrites.Compared with rat neurons,mouse neurons exhibited higher bpAP speed and lower fpAP speed,more distally located ankyrin G(AnkG)in AISs,and longer Nav1.2 lengths in AISs.Moreover,during AIS plasticity,AnkG and Nav1.2 showed distal shifts in location and shorter lengths of labeled AISs in rat neurons;in mouse neurons,however,they showed a longer AnkG-labeled length and more distal Nav1.2 location.Our findings suggest that hippocampal neurons in SD rats and C57 mice may have different AP propagation speeds,different AnkG and Nav1.2 patterns in the AIS,and different AIS plasticity properties,indicating that comparisons between these species must be carefully considered.
基金the National Science and Technology Innovation 2030-Major program of"Brain Science and Brain-Like Research"(2022ZD0211800)the National Natural Science Foundation of China(81971679,32020103007,32088101,and 21727806),the Ministry of Science and Technology(2018YFA0507600 and2017YFA0503600)+1 种基金theQidong-PKU SLS Innovation Fund(2016000663 and 2017000246)the National Key R&DProgram of China(2020AAA0105200).
文摘The back-propagating action potential(bpAP)is crucial for neuronal signal integration and synaptic plasticity in dendritic trees.Its properties(velocity and amplitude)can be affected by dendritic morphology.Due to limited spatial resolution,it has been difficult to explore the specific propagation process of bpAPs along dendrites and examine the influence of dendritic morphology,such as the dendrite diameter and branching pattern,using patch-clamp recording.By taking advantage of Optopatch,an all-optical electrophysiological method,we made detailed recordings of the real-time propagation of bpAPs in dendritic trees.We found that the velocity of bpAPs was not uniform in a single dendrite,and the bpAP velocity differed among distinct dendrites of the same neuron.The velocity of a bpAP was positively correlated with the diameter of the dendrite on which it propagated.In addition,when bpAPs passed through a dendritic branch point,their velocity decreased significantly.Similar to velocity,the amplitude of bpAPs was also positively correlated with dendritic diameter,and the attenuation patterns of bpAPs differed among different dendrites.Simulation results from neuron models with different dendritic morphology corresponded well with the experimental results.These findings indicate that the dendritic diameter and branching pattern significantly influence the properties of bpAPs.The diversity among the bpAPs recorded in different neurons was mainly due to differences in dendritic morphology.These results may inspire the construction of neuronal models to predict the propagation of bpAPs in dendrites with enormous variation in morphology,to further illuminate the role of bpAPs in neuronal communication.
基金supported by the grants from the National Natural Science Foundation of China(No.32070929,81871655 and 31770185)the Special Funding for COVID-19 Prevention and Control of China(2020M670013ZX)+1 种基金the China Postdoctoral Science Foundation(2021M691474)Guangzhou Bai Rui Kang(BRK)Biological Science and Technology Limited Company,China。
文摘SARS-CoV-2 has caused more than 3.8 million deaths worldwide,and several types of COVID-19 vaccines are urgently approved for use,including adenovirus vectored vaccines.However,the thermal instability and pre-existing immunity have limited its wide applications.To circumvent these obstacles,we constructed a self-biomineralized adenovirus vectored COVID-19 vaccine(Sad23L-n Co V-S-Ca P)by generating a calcium phosphate mineral exterior(Ca P)based on Sad23L vector carrying the full-length gene of SARS-Co V-2 spike protein(S)under physiological condition.This Sad23L-n Co V-S-Ca P vaccine was examined for its characteristics of structure,thermostability,immunogenicity and avoiding the problem of preexisting immunity.In thermostability test,Sad23L-n Co V-S-Ca P could be stored at 4°C for over 45 days,26°C for more than 8 days and 37°C for approximately 2 days.Furthermore,Sad23L-n Co V-S-Ca P induced higher level of S-specific antibody and T cell responses,and was not affected by the pre-existing anti-Sad23L immunity,suggesting it could be used as boosting immunization on Sad23L-n Co V-S priming vaccination.The boosting with Sad23L-n Co V-S-Ca P vaccine induced high titers of 10^(5.01)anti-S1,10^(4.77)anti-S2 binding antibody,10^(3.04) pseudovirus neutralizing antibody(IC_(50)),and robust T-cell response of IFN-c(1466.16 SFCs/10^(6)cells)to S peptides,respectively.In summary,the selfbiomineralization of the COVID-19 vaccine Sad23L-n Co V-S-Ca P improved vaccine efficacy,which could be used in prime-boost regimen for prevention of SARS-Co V-2 infection in humans.
基金supported by Shanghai Municipal Science and Technology Major Project.
文摘The rapid rise of artificial intelligence(AI)has catalyzed advancements across various trades and professions.Developing large-scale AI models is now widely regarded as one of the most viable approaches to achieving general-purpose intelligent agents.This pressing demand has made the development of more advanced computing accelerators an enduring goal for the rapid realization of large-scale AI models.However,as transistor scaling approaches physical limits,traditional digital electronic accelerators based on the von Neumann architecture face significant bottlenecks in energy consumption and latency.Optical computing accelerators,leveraging the high bandwidth,low latency,low heat dissipation,and high parallelism of optical devices and transmission over waveguides or free space,offer promising potential to overcome these challenges.In this paper,inspired by the generic architectures of digital electronic accelerators,we conduct a bottom-up review of the principles and applications of optical computing accelerators based on the basic element of computing accelerators–the multiply-accumulate(MAC)unit.Then,we describe how to solve matrix multiplication by composing calculator arrays from different MAC units in diverse architectures,followed by a discussion on the two main applications where optical computing accelerators are reported to have advantages over electronic computing.Finally,the challenges of optical computing and our perspective on its future development are presented.Moreover,we also survey the current state of optical computing in the industry and provide insights into the future commercialization of optical computing.