Actuator dynamics introduce a synchronization disparity between commanded displacements transmitted to the actuator and the actual displacements generated by the actuator,thereby affecting its precision and potentiall...Actuator dynamics introduce a synchronization disparity between commanded displacements transmitted to the actuator and the actual displacements generated by the actuator,thereby affecting its precision and potentially leading to instability in real-time hybrid simulation(RTHS).This study aims to elucidate the relationship between calculated and measured displacements by analyzing their magnitude and phase in the frequency domain via transformations.The physical implications of these relationships are explored in the context of frequency domain evaluation indices(FEI),the transfer function of actuator dynamics,and delay compensation.Formulations for achieving perfect compensation of actuator dynamics are developed,and an enhanced compensation approach,termed improved windowed frequency domain evaluation index-based compensation(IWFEI),is introduced.The efficacy of IWFEI is assessed using a RTHS benchmark model,with perturbed simulations conducted to validate its robustness.Uncertainties inherent in actuator dynamics are represented as random variables in these simulations.Comparative analysis of the mean values and variances of evaluation criteria demonstrates that IWFEI enables more accurate and robust compensation.Furthermore,strong correlations observed among criteria in the time and frequency domains underscore the effectiveness of the proposed frequency domain-based compensation method in mitigating amplitude errors and phase delays in RTHS.展开更多
Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing...Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing methods have limitations in obtaining this local assessment in either the time domain or frequency domain.In this study,the instantaneous frequency is introduced to determine local control parameters for actuator tracking assessment in a real-time hybrid simulation.Instantaneous properties,including amplitude,delay,frequency and phase,are then calculated based on analytic signals translated from actuator tracking signals through the Hilbert transform.Potential issues are discussed and solutions are proposed for calculation of local control parameters.Numerical simulations are first conducted for sinusoidal and chirp signals with time varying amplitude error and delay to demonstrate the potential of the proposed method.Laboratory tests also are conducted for a predefined random signal as well as the RTHS of a single degree of freedom structure with a self-centering viscous damper to experimentally verify the effectiveness of the proposed use of the instantaneous frequency.Results from the ensuing analysis clearly demonstrate that the instantaneous frequency provides great potential for local control assessment,and the proposed method enables local tracking parameters with good accuracy.展开更多
基金Ministry of Science and Technology of China under Grant No.2023YFC3804300National Science Foundation of China under Grant No.52178114。
文摘Actuator dynamics introduce a synchronization disparity between commanded displacements transmitted to the actuator and the actual displacements generated by the actuator,thereby affecting its precision and potentially leading to instability in real-time hybrid simulation(RTHS).This study aims to elucidate the relationship between calculated and measured displacements by analyzing their magnitude and phase in the frequency domain via transformations.The physical implications of these relationships are explored in the context of frequency domain evaluation indices(FEI),the transfer function of actuator dynamics,and delay compensation.Formulations for achieving perfect compensation of actuator dynamics are developed,and an enhanced compensation approach,termed improved windowed frequency domain evaluation index-based compensation(IWFEI),is introduced.The efficacy of IWFEI is assessed using a RTHS benchmark model,with perturbed simulations conducted to validate its robustness.Uncertainties inherent in actuator dynamics are represented as random variables in these simulations.Comparative analysis of the mean values and variances of evaluation criteria demonstrates that IWFEI enables more accurate and robust compensation.Furthermore,strong correlations observed among criteria in the time and frequency domains underscore the effectiveness of the proposed frequency domain-based compensation method in mitigating amplitude errors and phase delays in RTHS.
基金National Natural Science Foundation of China under Grant No.52178114Jiangsu Association for Science and Technology Youth Science and Technology Talent Support Project No.2021-79。
文摘Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing methods have limitations in obtaining this local assessment in either the time domain or frequency domain.In this study,the instantaneous frequency is introduced to determine local control parameters for actuator tracking assessment in a real-time hybrid simulation.Instantaneous properties,including amplitude,delay,frequency and phase,are then calculated based on analytic signals translated from actuator tracking signals through the Hilbert transform.Potential issues are discussed and solutions are proposed for calculation of local control parameters.Numerical simulations are first conducted for sinusoidal and chirp signals with time varying amplitude error and delay to demonstrate the potential of the proposed method.Laboratory tests also are conducted for a predefined random signal as well as the RTHS of a single degree of freedom structure with a self-centering viscous damper to experimentally verify the effectiveness of the proposed use of the instantaneous frequency.Results from the ensuing analysis clearly demonstrate that the instantaneous frequency provides great potential for local control assessment,and the proposed method enables local tracking parameters with good accuracy.