Constructing two-dimensional(2D)van der Waals heterostructures(vdWHs)can expand the electronic and optoelectronic applications of 2D semiconductors.However,the work on the 2D vdWHs with robust band alignment is still ...Constructing two-dimensional(2D)van der Waals heterostructures(vdWHs)can expand the electronic and optoelectronic applications of 2D semiconductors.However,the work on the 2D vdWHs with robust band alignment is still scarce.Here,we employ a global structure search approach to construct the vdWHs with monolayer MoSi_(2)N_(4)and widebandgap GeO_(2).The studies show that the GeO_(2)/MoSi_(2)N_(4)vdWHs have the characteristics of direct structures with the band gap of 0.946 eV and typeII band alignment with GeO_(2)and MoSi_(2)N_(4)layers as the conduction band minimum(CBM)and valence band maximum(VBM),respectively.Also,the direct-to-indirect band gap transition can be achieved by applying biaxial strain.In particular,the 2D GeO_(2)/MoSi_(2)N_(4)vdWHs show a robust type-II band alignment under the effects of biaxial strain,interlayer distance and external electric field.The results provide a route to realize the robust type-II band alignment vdWHs,which is helpful for the implementation of optoelectronic nanodevices with stable characteristics.展开更多
Dielectric engineering plays a crucial role in the process of device miniaturization.Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors(MOSFETs),consider...Dielectric engineering plays a crucial role in the process of device miniaturization.Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors(MOSFETs),considering hetero-gate-dielectric construction,dielectric materials and GaSe stacking pattern.The results show that device performance strongly depends on the dielectric constants and locations of insulators.When highk dielectric is placed close to the drain,it behaves with a larger on-state current(I_(on))of 5052μA/μm when the channel is 5 nm.Additionally,when the channel is 5 nm and insulator is HfO_(2),the largest I_(on) is 5134μA/μm for devices with AC stacking GaSe channel.In particular,when the gate length is 2 nm,it still meets the HP requirements of ITRS 2028 for the device with AA stacking when high-k dielectric is used.Hence,the work provides guidance to regulate the performance of the two-dimensional nanodevices by dielectric engineering.展开更多
基金the National Natural Science Foundation of China under Grant Nos.11904085 and 12074103Program for Outstanding Youth of Henan Province under Grant No.202300410221Henan Normal University Innovative Science and Technology Team under Grant No.20200185.
文摘Constructing two-dimensional(2D)van der Waals heterostructures(vdWHs)can expand the electronic and optoelectronic applications of 2D semiconductors.However,the work on the 2D vdWHs with robust band alignment is still scarce.Here,we employ a global structure search approach to construct the vdWHs with monolayer MoSi_(2)N_(4)and widebandgap GeO_(2).The studies show that the GeO_(2)/MoSi_(2)N_(4)vdWHs have the characteristics of direct structures with the band gap of 0.946 eV and typeII band alignment with GeO_(2)and MoSi_(2)N_(4)layers as the conduction band minimum(CBM)and valence band maximum(VBM),respectively.Also,the direct-to-indirect band gap transition can be achieved by applying biaxial strain.In particular,the 2D GeO_(2)/MoSi_(2)N_(4)vdWHs show a robust type-II band alignment under the effects of biaxial strain,interlayer distance and external electric field.The results provide a route to realize the robust type-II band alignment vdWHs,which is helpful for the implementation of optoelectronic nanodevices with stable characteristics.
基金supported by the National Natural Science Foundation of China(Grants Nos.12374070 and 12074103)the Foundation for University Key Young Teacher of Henan(Grant No.2023GGJS035)+2 种基金Henan Province Postdoctoral Project Launch Funding(Grant No.5201029430112)the Science and Technology Program of Henan(Grant No.232102230080)supported by the High Performance Computing Center of Henan Normal University.
文摘Dielectric engineering plays a crucial role in the process of device miniaturization.Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors(MOSFETs),considering hetero-gate-dielectric construction,dielectric materials and GaSe stacking pattern.The results show that device performance strongly depends on the dielectric constants and locations of insulators.When highk dielectric is placed close to the drain,it behaves with a larger on-state current(I_(on))of 5052μA/μm when the channel is 5 nm.Additionally,when the channel is 5 nm and insulator is HfO_(2),the largest I_(on) is 5134μA/μm for devices with AC stacking GaSe channel.In particular,when the gate length is 2 nm,it still meets the HP requirements of ITRS 2028 for the device with AA stacking when high-k dielectric is used.Hence,the work provides guidance to regulate the performance of the two-dimensional nanodevices by dielectric engineering.