A broadband tunable acoustic metasurface(BTAM)is conceived with Helmholtz resonators(HRs).The tunability of HRs’neck enables precise control over the phase shift of the unit cell.Through careful arrangement of unit c...A broadband tunable acoustic metasurface(BTAM)is conceived with Helmholtz resonators(HRs).The tunability of HRs’neck enables precise control over the phase shift of the unit cell.Through careful arrangement of unit cells,the BTAMs are engineered to exhibit various phase differences,thereby inducing anomalous reflections and acoustic focusing.Numerical simulations demonstrate the BTAM’s remarkable efficacy in manipulating the angle of reflection wave and achieving wave focusing across a broadband frequency range.Experimental investigations of the phase shift and anomalous reflection further validate the design of metasurface.This work contributes to the fields of broadband and tunable acoustic wave manipulation and provides a flexible and efficient approach for acoustic control devices.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11991030,11991031 and 12202054)Aeronautical Science Foundation(Grant No.ASFC20230042072010).
文摘A broadband tunable acoustic metasurface(BTAM)is conceived with Helmholtz resonators(HRs).The tunability of HRs’neck enables precise control over the phase shift of the unit cell.Through careful arrangement of unit cells,the BTAMs are engineered to exhibit various phase differences,thereby inducing anomalous reflections and acoustic focusing.Numerical simulations demonstrate the BTAM’s remarkable efficacy in manipulating the angle of reflection wave and achieving wave focusing across a broadband frequency range.Experimental investigations of the phase shift and anomalous reflection further validate the design of metasurface.This work contributes to the fields of broadband and tunable acoustic wave manipulation and provides a flexible and efficient approach for acoustic control devices.