This study presents finely resolved radar signatures of multiple cyclonic vortices associated with an EF2 tornadic supercell that occurred in Guangzhou on 16 June 2022 and discusses how the mesocyclone formed on the l...This study presents finely resolved radar signatures of multiple cyclonic vortices associated with an EF2 tornadic supercell that occurred in Guangzhou on 16 June 2022 and discusses how the mesocyclone formed on the lee side of mountain.A nearby X-band phased-array radar provides evidence that the mesocyclone was shallow,with a depth generally confined to less than 3 km.The mesocyclonic feature was observed to initiate from near-ground level,driven by the interaction between intensifying cold pool surges and shallow lee-side ambient flows.It was first recognized shortly after the presence of near-ground cyclonic convergence signatures over the leading edges of cold pool outflows.Over the subsequent 17 min,the mesocyclone developed upward,reaching a maximum height of 3 km,and produced a tornado 8min later.Nearly coinciding with the time of tornadogenesis,a noticeable separation of the low-level tornado cyclone from the midlevel mesocyclone was observed.This shift in the vertically oriented vortex tube was likely caused by modifications to the low-level flow due to the complex hilly terrain or by occlusions associated with rear-flank downdrafts.After tornadogenesis,high-resolution X-PAR observations revealed that the lowest-level mesocyclonic signature contracted into a gate-to-gate tornadic vortex signature(TVS)at the tip of hook echoes.Compared to conventional S-band operational weather radars,rapid-scan X-PAR observations indicate that a core diameter threshold of 1.5–2 km could be employed to identify a cyclonically sheared radial velocity couplet as a TVS,potentially extending the lead time for Doppler-based tornado warnings.展开更多
The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is ...The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is verified against surface rain-gauge observations. The observed morning precipitation peak on the windward(relative to the prevailing synoptic-scale wind) side of the DBM is reproduced with good spatial and temporal accuracy. The interaction between the DBM and a nocturnal boundary layer low-level jet(BLJ) due to the inertial oscillation mechanism is shown to be responsible for this precipitation peak. The BLJ is aligned with the lower-level southwesterly synoptic-scale flow that carries abundant moisture.The BLJ core is established at around 0200 LST upwind of the mountains. It moves towards the DBM and reaches maximum intensity at about 70 km ahead of the mountains. When the BLJ impinges upon the windward side of the DBM in the early morning, mechanical lifting of moist air leads to condensation and subsequent precipitation.展开更多
基金supported by the National Key R&D Program of China(2022YFC3004101)the National Natural Science Foundation of China(Grant No.42275006)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515011814)the China Meteorological Administration Tornado Key Laboratory(Grant No.TKL202302)the Science and Technology Research Project of Guangdong Meteorological Service(Grant No.GRMC2023Q35)。
文摘This study presents finely resolved radar signatures of multiple cyclonic vortices associated with an EF2 tornadic supercell that occurred in Guangzhou on 16 June 2022 and discusses how the mesocyclone formed on the lee side of mountain.A nearby X-band phased-array radar provides evidence that the mesocyclone was shallow,with a depth generally confined to less than 3 km.The mesocyclonic feature was observed to initiate from near-ground level,driven by the interaction between intensifying cold pool surges and shallow lee-side ambient flows.It was first recognized shortly after the presence of near-ground cyclonic convergence signatures over the leading edges of cold pool outflows.Over the subsequent 17 min,the mesocyclone developed upward,reaching a maximum height of 3 km,and produced a tornado 8min later.Nearly coinciding with the time of tornadogenesis,a noticeable separation of the low-level tornado cyclone from the midlevel mesocyclone was observed.This shift in the vertically oriented vortex tube was likely caused by modifications to the low-level flow due to the complex hilly terrain or by occlusions associated with rear-flank downdrafts.After tornadogenesis,high-resolution X-PAR observations revealed that the lowest-level mesocyclonic signature contracted into a gate-to-gate tornadic vortex signature(TVS)at the tip of hook echoes.Compared to conventional S-band operational weather radars,rapid-scan X-PAR observations indicate that a core diameter threshold of 1.5–2 km could be employed to identify a cyclonically sheared radial velocity couplet as a TVS,potentially extending the lead time for Doppler-based tornado warnings.
基金supported by the Special Foundation of the China Meteorological Administration (Grant No.GYHY201506006)supported by the National Science Foundation of China (Grant Nos.41405100,41322032 and 41275031)
文摘The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is verified against surface rain-gauge observations. The observed morning precipitation peak on the windward(relative to the prevailing synoptic-scale wind) side of the DBM is reproduced with good spatial and temporal accuracy. The interaction between the DBM and a nocturnal boundary layer low-level jet(BLJ) due to the inertial oscillation mechanism is shown to be responsible for this precipitation peak. The BLJ is aligned with the lower-level southwesterly synoptic-scale flow that carries abundant moisture.The BLJ core is established at around 0200 LST upwind of the mountains. It moves towards the DBM and reaches maximum intensity at about 70 km ahead of the mountains. When the BLJ impinges upon the windward side of the DBM in the early morning, mechanical lifting of moist air leads to condensation and subsequent precipitation.