期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Twisted and screw dislocation-driven growth of MoSe_(2) nanostructures by chemical vapor transport
1
作者 Philip Putze Daniel Wolf +7 位作者 Paul Chekhonin Alexey APopov Tobias Ritschel Axel Lubk Jochen Geck Bernd Büchner peer schmidt Silke Hampel 《Nano Research》 2026年第1期713-722,共10页
Twisted multilayers of two-dimensional materials attract widespread research interest due to their intriguing electronic and optical properties related to their chiral symmetry breaking and moiréeffects.The two-d... Twisted multilayers of two-dimensional materials attract widespread research interest due to their intriguing electronic and optical properties related to their chiral symmetry breaking and moiréeffects.The two-dimensional transition metal dichalcogenide MoSe_(2) is a particularly promising material for twisted multilayers,capable of sustaining moiréexcitons.Here,we report on a rational bottomup synthesis approach for twisted MoSe_(2) flakes by chemical vapor transport(CVT).Screw dislocation-driven growth was forced by surface-fused SiO_(2)nanoparticles on the substrates that serve as potential nucleation points in low supersaturation condition.Thus,crystal growth by in-situ CVT under addition of MoCl_(5) leads to bulk 2H-MoSe_(2) in a temperature gradient from 900 to 820℃ with a dwell time of 96 h.Hexagonally shaped 2H-MoSe_(2) flakes were grown from 710 to 685℃ with a dwell time of 30 min on SiO_(2)@Al_(2)O_(3)(0001)substrates.Electron backscatter diffraction as well as electron microscopy reveals the screw dislocation-driven growth of triangular 3R-MoSe_(2) with individual step heights between 0.9 and 2.9 nm on SiO_(2)@Si(100)under the same conditions.Finally,twisted MoSe_(2) flakes exhibiting a twist angle of 19°with respect to the[010]zone axis could be synthesized. 展开更多
关键词 twisted MoSe_(2)nanostructures screw dislocation transition metal dichalcogenides chemical vapor transport(CVT) two-dimensional(2D)materials thermodynamic CVT simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部