A homogeneous shallow-water model with free surface is used to model the tidal circulation in the Persian Gulf. The numerical finite-difference model includes harmonic diffusion of horizontal momentum and quadratic bo...A homogeneous shallow-water model with free surface is used to model the tidal circulation in the Persian Gulf. The numerical finite-difference model includes harmonic diffusion of horizontal momentum and quadratic bottom friction, it has a 9 km mesh size and it is forced by 7 tidal components at its southern boundary. High precision bathymetric data are used to obtain the bottom topography. The numerical model is run for more than a year. The results are the following: 1) The model accurately reproduces the tidal phase and amplitude observed at 42 tidal gauges in the region. This accuracy is attributed to the presence of the 7 components which are able to interact nonlinearly;2) The amphidromic points are also well positioned by the model due to a proper choice of bathymetry. This was checked also with a simpler geometry of the domain;3) The tidal currents can be strong in the Straits of Hormuz and in shallow areas;thus they will have an effect of the hydrology of the region. The residual currents are weak so that they will be negligible for the large-scale circulation on long periods;4) Finally, the sea-surface elevation forecast by the model is in close agreement with in-situ measurements of pressure in the Straits, performed during the GOGP99 experiment.展开更多
A shallow-water model, coupled with a three dimensional, hydrostatic ocean model, is used to study the wind induced circulation, and the Shatt-al-Arab river plume expansion, in the Persian Gulf. The models are used in...A shallow-water model, coupled with a three dimensional, hydrostatic ocean model, is used to study the wind induced circulation, and the Shatt-al-Arab river plume expansion, in the Persian Gulf. The models are used in an idealized configuration. The following results are obtained: 1) with northwesterly winds, a double gyre is formed: this gyre is cyclonic in the south and anticyclonic in the north. Southeastward currents flow along the Iranian and Arabian coast where the wind stress at the surface dominates the pressure gradient related to the free surface slope, and conversely in the deeper region of the Gulf;2) In the eastern part of the Gulf, the cyclonic gyre intensifies, as observed and reported in the literature;3) For northwesterly winds, the plume from Shatt-al-Arab first heads towards the Iranian coast and then spreads southeastward along the Arabian coast;for northerly and northeasterly winds, the plume directly follows the Kuwaiti coast and then the Arabian coast. This sensitivity of the orientation can be related to the double gyre flow structure;4) A southeasterly wind confines the plume in the northern end of the Gulf as does a pure tidal flow.展开更多
文摘A homogeneous shallow-water model with free surface is used to model the tidal circulation in the Persian Gulf. The numerical finite-difference model includes harmonic diffusion of horizontal momentum and quadratic bottom friction, it has a 9 km mesh size and it is forced by 7 tidal components at its southern boundary. High precision bathymetric data are used to obtain the bottom topography. The numerical model is run for more than a year. The results are the following: 1) The model accurately reproduces the tidal phase and amplitude observed at 42 tidal gauges in the region. This accuracy is attributed to the presence of the 7 components which are able to interact nonlinearly;2) The amphidromic points are also well positioned by the model due to a proper choice of bathymetry. This was checked also with a simpler geometry of the domain;3) The tidal currents can be strong in the Straits of Hormuz and in shallow areas;thus they will have an effect of the hydrology of the region. The residual currents are weak so that they will be negligible for the large-scale circulation on long periods;4) Finally, the sea-surface elevation forecast by the model is in close agreement with in-situ measurements of pressure in the Straits, performed during the GOGP99 experiment.
文摘A shallow-water model, coupled with a three dimensional, hydrostatic ocean model, is used to study the wind induced circulation, and the Shatt-al-Arab river plume expansion, in the Persian Gulf. The models are used in an idealized configuration. The following results are obtained: 1) with northwesterly winds, a double gyre is formed: this gyre is cyclonic in the south and anticyclonic in the north. Southeastward currents flow along the Iranian and Arabian coast where the wind stress at the surface dominates the pressure gradient related to the free surface slope, and conversely in the deeper region of the Gulf;2) In the eastern part of the Gulf, the cyclonic gyre intensifies, as observed and reported in the literature;3) For northwesterly winds, the plume from Shatt-al-Arab first heads towards the Iranian coast and then spreads southeastward along the Arabian coast;for northerly and northeasterly winds, the plume directly follows the Kuwaiti coast and then the Arabian coast. This sensitivity of the orientation can be related to the double gyre flow structure;4) A southeasterly wind confines the plume in the northern end of the Gulf as does a pure tidal flow.