Traditional Global Positioning System(GPS)technology,with its high power consumption and limited perfor-mance in obstructed environments,is unsuitable for many Internet of Things(IoT)applications.This paper explores L...Traditional Global Positioning System(GPS)technology,with its high power consumption and limited perfor-mance in obstructed environments,is unsuitable for many Internet of Things(IoT)applications.This paper explores LoRa as an alternative localization technology,leveraging its low power consumption,robust indoor penetration,and extensive coverage area,which render it highly suitable for diverse IoT settings.We comprehensively review several LoRa-based localization techniques,including time of arrival(ToA),time difference of arrival(TDoA),round trip time(RTT),received signal strength indicator(RSSI),and fingerprinting methods.Through this review,we evaluate the strengths and limitations of each technique and investigate hybrid models to potentially improve positioning accuracy.Case studies in smart cities,agriculture,and logistics exemplify the versatility of LoRa for indoor and outdoor applications.Our findings demonstrate that LoRa technology not only overcomes the limitations of GPS regarding power consumption and coverage but also enhances the scalability and efficiency of IoT deployments in complex environments.展开更多
Software-Defined Networking(SDN)represents a significant paradigm shift in network architecture,separating network logic from the underlying forwarding devices to enhance flexibility and centralize deployment.Concur-r...Software-Defined Networking(SDN)represents a significant paradigm shift in network architecture,separating network logic from the underlying forwarding devices to enhance flexibility and centralize deployment.Concur-rently,the Internet of Things(IoT)connects numerous devices to the Internet,enabling autonomous interactions with minimal human intervention.However,implementing and managing an SDN-IoT system is inherently complex,particularly for those with limited resources,as the dynamic and distributed nature of IoT infrastructures creates security and privacy challenges during SDN integration.The findings of this study underscore the primary security and privacy challenges across application,control,and data planes.A comprehensive review evaluates the root causes of these challenges and the defense techniques employed in prior works to establish sufficient secrecy and privacy protection.Recent investigations have explored cutting-edge methods,such as leveraging blockchain for transaction recording to enhance security and privacy,along with applying machine learning and deep learning approaches to identify and mitigate the impacts of Denial of Service(DoS)and Distributed DoS(DDoS)attacks.Moreover,the analysis indicates that encryption and hashing techniques are prevalent in the data plane,whereas access control and certificate authorization are prominently considered in the control plane,and authentication is commonly employed within the application plane.Additionally,this paper outlines future directions,offering insights into potential strategies and technological advancements aimed at fostering a more secure and privacy-conscious SDN-based IoT ecosystem.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province under grant no.LGF22F010006the Humanities and Social Science Research Project of Ministry of Education of China under grant no.22YJAZH016.
文摘Traditional Global Positioning System(GPS)technology,with its high power consumption and limited perfor-mance in obstructed environments,is unsuitable for many Internet of Things(IoT)applications.This paper explores LoRa as an alternative localization technology,leveraging its low power consumption,robust indoor penetration,and extensive coverage area,which render it highly suitable for diverse IoT settings.We comprehensively review several LoRa-based localization techniques,including time of arrival(ToA),time difference of arrival(TDoA),round trip time(RTT),received signal strength indicator(RSSI),and fingerprinting methods.Through this review,we evaluate the strengths and limitations of each technique and investigate hybrid models to potentially improve positioning accuracy.Case studies in smart cities,agriculture,and logistics exemplify the versatility of LoRa for indoor and outdoor applications.Our findings demonstrate that LoRa technology not only overcomes the limitations of GPS regarding power consumption and coverage but also enhances the scalability and efficiency of IoT deployments in complex environments.
基金This work was supported by National Natural Science Foundation of China(Grant No.62341208)Natural Science Foundation of Zhejiang Province(Grant Nos.LY23F020006 and LR23F020001)Moreover,it has been supported by Islamic Azad University with the Grant No.133713281361.
文摘Software-Defined Networking(SDN)represents a significant paradigm shift in network architecture,separating network logic from the underlying forwarding devices to enhance flexibility and centralize deployment.Concur-rently,the Internet of Things(IoT)connects numerous devices to the Internet,enabling autonomous interactions with minimal human intervention.However,implementing and managing an SDN-IoT system is inherently complex,particularly for those with limited resources,as the dynamic and distributed nature of IoT infrastructures creates security and privacy challenges during SDN integration.The findings of this study underscore the primary security and privacy challenges across application,control,and data planes.A comprehensive review evaluates the root causes of these challenges and the defense techniques employed in prior works to establish sufficient secrecy and privacy protection.Recent investigations have explored cutting-edge methods,such as leveraging blockchain for transaction recording to enhance security and privacy,along with applying machine learning and deep learning approaches to identify and mitigate the impacts of Denial of Service(DoS)and Distributed DoS(DDoS)attacks.Moreover,the analysis indicates that encryption and hashing techniques are prevalent in the data plane,whereas access control and certificate authorization are prominently considered in the control plane,and authentication is commonly employed within the application plane.Additionally,this paper outlines future directions,offering insights into potential strategies and technological advancements aimed at fostering a more secure and privacy-conscious SDN-based IoT ecosystem.