Background Efficient disaster victim detection(DVD)in urban areas after natural disasters is crucial for minimizing losses.However,conventional search and rescue(SAR)methods often experience delays,which can hinder th...Background Efficient disaster victim detection(DVD)in urban areas after natural disasters is crucial for minimizing losses.However,conventional search and rescue(SAR)methods often experience delays,which can hinder the timely detection of victims.SAR teams face various challenges,including limited access to debris and collapsed structures,safety risks due to unstable conditions,and disrupted communication networks.Methods In this paper,we present DeepSafe,a novel two-level deep learning approach for multilevel classification and object detection using a simulated disaster victim dataset.DeepSafe first employs YOLOv8 to classify images into victim and non-victim categories.Subsequently,Detectron2 is used to precisely locate and outline the victims.Results Experimental results demonstrate the promising performance of DeepSafe in both victim classification and detection.The model effectively identified and located victims under the challenging conditions presented in the dataset.Conclusion DeepSafe offers a practical tool for real-time disaster management and SAR operations,significantly improving conventional methods by reducing delays and enhancing victim detection accuracy in disaster-stricken urban areas.展开更多
基金Supported by European Union’s Horizon 2020 Research and Innovation Program(739578)the Government of the Republic of Cyprus through the Deputy Ministry of Research,Innovation,and Digital Policy.
文摘Background Efficient disaster victim detection(DVD)in urban areas after natural disasters is crucial for minimizing losses.However,conventional search and rescue(SAR)methods often experience delays,which can hinder the timely detection of victims.SAR teams face various challenges,including limited access to debris and collapsed structures,safety risks due to unstable conditions,and disrupted communication networks.Methods In this paper,we present DeepSafe,a novel two-level deep learning approach for multilevel classification and object detection using a simulated disaster victim dataset.DeepSafe first employs YOLOv8 to classify images into victim and non-victim categories.Subsequently,Detectron2 is used to precisely locate and outline the victims.Results Experimental results demonstrate the promising performance of DeepSafe in both victim classification and detection.The model effectively identified and located victims under the challenging conditions presented in the dataset.Conclusion DeepSafe offers a practical tool for real-time disaster management and SAR operations,significantly improving conventional methods by reducing delays and enhancing victim detection accuracy in disaster-stricken urban areas.