Rare earth elements(REEs)play a crucial role in many technologies from daily appliances in cell phones to more advanced wind turbines and electric cars.Permanent magnets account for a quarter of total global REEs prod...Rare earth elements(REEs)play a crucial role in many technologies from daily appliances in cell phones to more advanced wind turbines and electric cars.Permanent magnets account for a quarter of total global REEs production and have high recycling value.In this study,smelting process was used to selectively oxidize REEs in the permanent magnets by adding Fe_(2)O_(3).This separates REEs into a slag phase from an iron-rich metallic phase.B_(2)O_(3) was also added to the system as a flux to lower the slag melting temperature.This minimizes REEs loss to the metallic phase and allows a more efficient phase separation.The effect of flux and oxidizing agent addition was investigated on both regular and cerium-rich NdFeB(NdCeFeB)magnets.At 1350℃and for 1 h,the slag phase was successfully separated from the metallic phase with the addition of 0.8 stoichiometric amount of Fe_(2)O_(3) and 40 wt%of B_(2)O_(3).Scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDX)analysis reveals that REEs in the magnet do not migrate to the metal phase while the REE-rich slag phase contains almost no iron.After the selective removal of iron into the metallic phase,REEs are recovered from the slag phase through an acid leaching process allowing>99%of REEs recovery.Boron in the magnet can also be recovered as useful boric acid by evaporation and crystallisation technique.The proposed process in this study is reagent and energy-efficient with almost complete valorisation of both NdCeFeB and NdFeB magnets.展开更多
基金Project supported by the Science and Engineering Research Board of India(SRG/2020/002096)。
文摘Rare earth elements(REEs)play a crucial role in many technologies from daily appliances in cell phones to more advanced wind turbines and electric cars.Permanent magnets account for a quarter of total global REEs production and have high recycling value.In this study,smelting process was used to selectively oxidize REEs in the permanent magnets by adding Fe_(2)O_(3).This separates REEs into a slag phase from an iron-rich metallic phase.B_(2)O_(3) was also added to the system as a flux to lower the slag melting temperature.This minimizes REEs loss to the metallic phase and allows a more efficient phase separation.The effect of flux and oxidizing agent addition was investigated on both regular and cerium-rich NdFeB(NdCeFeB)magnets.At 1350℃and for 1 h,the slag phase was successfully separated from the metallic phase with the addition of 0.8 stoichiometric amount of Fe_(2)O_(3) and 40 wt%of B_(2)O_(3).Scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDX)analysis reveals that REEs in the magnet do not migrate to the metal phase while the REE-rich slag phase contains almost no iron.After the selective removal of iron into the metallic phase,REEs are recovered from the slag phase through an acid leaching process allowing>99%of REEs recovery.Boron in the magnet can also be recovered as useful boric acid by evaporation and crystallisation technique.The proposed process in this study is reagent and energy-efficient with almost complete valorisation of both NdCeFeB and NdFeB magnets.