Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these i...Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.展开更多
The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic...The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic field polarity reversals,the oceanic lithosphere has significant remanent magnetization,which causes magnetic anomaly stripes parallel to the mid-ocean ridges.However,it is difficult to construct a high-resolution lithospheric magnetic field model in oceanic regions with relatively sparse data or no data.Using forward calculated lithospheric magnetic field data based on an oceanic remanent magnetization(ORM) model with physical and geological foundations as a supplement is a feasible approach.We first collect the latest available oceanic crust age grid,plate motion model,geomagnetic polarity timescale,and oceanic lithosphere thermal structure.Combining the assumptions that the paleo geomagnetic field is a geocentric axial dipole field and that the normal oceanic crust moves only in the horizontal direction,we construct a vertically integrated ORM model of the normal oceanic crust with a known age,including the intensity,inclination,and declination.Both the ORM model and the global induced magnetization(GIM) model are then scaled from two aspects between their forward calculated results and the lithospheric magnetic field model LCS-1.One aspect is the difference in their spherical harmonic power spectra,and the other is the misfit between the grid data over the oceans.We last compare the forward calculated lithospheric magnetic anomaly from the scaled ORM and GIM models with the Macao Science Satellite-1(MSS-1) observed data.The comparison results show that the magnetic anomalies over the normal oceanic crust regions at satellite altitude are mainly contributed by the high-intensity remanent magnetization corresponding to the Cretaceous magnetic quiet period.In these regions,the predicted and observed anomalies show good consistency in spatial distribution,whereas their amplitude differences vary across regions.This result suggests that regional ORM construction should be attempted in future work to address these amplitude discrepancies.展开更多
In this study,we present a comprehensive evaluation of the magnetic field measurements from the Vector Field Magnetometer(VFM)aboard the recently launched Macao Science Satellite-1(MSS-1).One-year data from November 2...In this study,we present a comprehensive evaluation of the magnetic field measurements from the Vector Field Magnetometer(VFM)aboard the recently launched Macao Science Satellite-1(MSS-1).One-year data from November 2,2023,to November 1,2024,are considered.The MSS-1 flies with a low inclination(41°)and is designed to provide high-resolution magnetic field measurements,especially for monitoring the evolution of the South Atlantic Anomaly.Earlier studies confirmed the possibility of using MSS-1A data to model the Earth’s main magnetic field(e.g.,Jiang Y et al.,2024).Therefore,in this study we focus on the magnetic signatures related to the external field,which are primarily associated with magnetospheric and ionospheric currents.The global distributions of the magnetic residuals from MSS-1A show a pattern consistent with that derived from the European Space Agency’s Swarm A satellite.A statistical survey of the conjugated observations(withΔt<5 min andΔR<150 km)between the two satellites showed that the difference between their magnetic residuals is within±3 nanoteslas.By separating the magnetic residuals at the noon and midnight hours,we see that the MSS-1A data can effectively capture features of the magnetospheric and ionospheric currents,such as the magnetospheric ring current and ionospheric equatorial electrojet.Moreover,the magnetic residuals from MSS-1A show a diamagnetic effect caused by post-sunset equatorial plasma bubbles,which also suggests that the MSS-1A data have the potential to reveal the ionospheric structures.The comprehensive evaluations performed within this study demonstrate that the MSS-1A provides high-quality magnetic field data reaching the level of the Swarm satellite,which enables a deeper understanding of the modeling of Earth’s magnetic field as well as monitoring of the magnetic environment.展开更多
The Macao Science Satellite-1(MSS-1)is the first space science satellite jointly developed on the Chinese mainland and in Macao region.It comprises two satellites,named MSS-1A and MSS-1B,and holds considerable importa...The Macao Science Satellite-1(MSS-1)is the first space science satellite jointly developed on the Chinese mainland and in Macao region.It comprises two satellites,named MSS-1A and MSS-1B,and holds considerable importance in China’s space exploration endeavors.Among these,MSS-1A is the world’s first high-precision scientific satellite dedicated to exploring the geomagnetic field and space environment at low latitudes.Equipped with two high-precision vector magnetometers and one scalar magnetometer,which are integrally installed on a highly stable nonmagnetic optical bench,the MSS-1A enables simultaneous high-precision measurements of both the Earth’s vector magnetic field and its scalar components.Its design integrates several state-of-the-art technologies,including arc-second-level thermal stability control,nonmagnetic thermal control for the optical bench,and ultra-high magnetic cleanliness control.These innovations effectively minimize magnetic interference originating from the satellite itself,thereby substantially improving the precision of geomagnetic field measurements and establishing a robust technical foundation for future magnetic survey satellite constellations.展开更多
The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collect...The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collecting data in a near-equatorial orbit.Magnetic field data from MSS-1's onboard Vector Fluxgate Magnetometer(VFM),collected at a sample rate of 50 Hz,allows us to detect and investigate sources of magnetic data contamination,from DC to relevant Nyquist frequency.Here we report two types of artificial disturbances in the VFM data.One is V-shaped events concentrated at night,with frequencies sweeping from the Nyquist frequency down to zero and back up.The other is 5-Hz events(ones that exhibit a distinct 5 Hz spectrum peak);these events are always accompanied by intervals of spiky signals,and are clearly related to the attitude control of the satellite.Our analyses show that VFM noise levels in daytime are systematically lower than in nighttime.The daily average noise levels exhibit a period of about 52 days.The V-shaped events are strongly correlated with higher VFM noise levels.展开更多
This study presents an inversion method to recover the tidal flow velocity using tidal signals extracted from geomagnetic satellite dataset.By integrating the latest Earth conductivity profile and the Earth's magn...This study presents an inversion method to recover the tidal flow velocity using tidal signals extracted from geomagnetic satellite dataset.By integrating the latest Earth conductivity profile and the Earth's magnetic field model,the limited memory quasi-Newton method(L-BFGS)is used to directly invert seawater flow velocities.We used the radial component of the induced magnetic field as the observed data,constructed an L_(2)-norm-based data misfit term using theoretical response and observed data,and applied smoothness constraints to the ocean flow velocity.The results agree well with the widely used HAMTIDE model in low-and mid-latitude regions,which is attributed to Macao Science Satellite-1's(MSS-1)unique low-inclination orbit of full coverage in these areas.These findings underscore MSS-1's potential to advance research on tidal-induced magnetic fields and their applications in ocean dynamics studies.展开更多
The Earth's crust,the outer shell of the Earth,consists of continental crust and oceanic crust.Oceanic crust is created at the mid-oceanic ridge,where it is magnetized in the ambient field of the Earth.As new mate...The Earth's crust,the outer shell of the Earth,consists of continental crust and oceanic crust.Oceanic crust is created at the mid-oceanic ridge,where it is magnetized in the ambient field of the Earth.As new material is extruded,the crust spreads outward,retaining its magnetization.The reversal of the polarity of the Earth's magnetic field over geologic time leads to a pattern of striped magnetic anomalies.In this study,we carry out a preliminary evaluation on how data from the Macao Science Satellite-1(MSS-1),which has a low orbital inclination,influences inversion models of the oceanic crustal magnetic field when combined with data from the Swarm mission.For our modeling we use an equivalent source method based on a cubed-sphere grid.Our model captures the broad magnetic structure over the North Atlantic Ocean and demonstrates that the trend of magnetic stripes is consistent with the age frame of the oceanic crust.The amplitude of the radial magnetic field at 450 km the North Atlantic Ocean ranges from–11 nT to+8 nT.The addition of MSS-1 observations to Swarm data generates results consistent with the overall magnetic stripe pattern.The lack of short-wavelength scale structure reveals the limitation of high-altitude satellites in portraying fine features and hence lower-altitude observations would be required to delineate a more detailed crustal signature.It is expected to obtain a finer structure of oceanic magnetic stripes by combining low-altitude CHAMP field data and east-west gradient data derived from MSS-1 in future work.展开更多
The hydrodynamic performance of high-speed planing hulls has gained considerable interest,with recent advancements in computational fluid dynamics and hull design techniques enhancing the understanding of planing hull...The hydrodynamic performance of high-speed planing hulls has gained considerable interest,with recent advancements in computational fluid dynamics and hull design techniques enhancing the understanding of planing hull hydrodynamics.In this study,we conducted a numerical investigation using the Reynolds-averaged Navier-Stokes approach with overset grids to capture large motions at high speeds.This study aims to improve the hydrodynamic performances of planing hulls,specifically focusing on total resistance,trim,and sinkage.The initial Fridsma hull with a deadrise angle of 20°has been used for validation,demonstrating good agreement with measurements at different Froude numbers.Subsequently,new configurations based on the Fridsma hull have been designed by varying the deadrise angle,number of chines,and transverse steps.Our findings reveal a correlation between the deadrise angle,the number of chines,and the Froude number.As the deadrise angle increases,total resistance also increases.Additionally,a single chine yields superior results at higher Froude numbers,while multiple chines offer advantages at lower values.The introduction of transverse steps consistently increases total resistance,highlighting their role in improving planing hull performance.This research not only offers valuable insights into planing hull design but also leverages state-of-the-art numerical methods to advance the understanding of hydrodynamic behaviors at high ship speeds.展开更多
Bacterial communities play a crucial role in permafrost biogeochemical cycling and ecosystem function maintenance.Bacterial interaction is one of the main factors in shaping soil bacterial communities.However,how woul...Bacterial communities play a crucial role in permafrost biogeochemical cycling and ecosystem function maintenance.Bacterial interaction is one of the main factors in shaping soil bacterial communities.However,how would bacterial interaction influence the bacterial communities in permafrost of the Qinghai-Tibet Plateau(QTP)remains largely unknown.Here we collected paired soil samples from both the active and permafrost layers of two typical QTP permafrost regions in October 2020 for Tuotuohe River(TTH)and May 2022 for Aerjin(ARJ),and investigated the bacterial communities and the role of interactions in structuring the bacterial community and its assembly process through amplicon sequencing of the 16S rRNA gene.Our study revealed distinct bacterial communities,with significant differences in the relative abundances of Proteobacteria(P<0.05),Acidobacteriota(P<0.001),Bacteroidota(P<0.05),and Planctomycetota(P<0.001)between the active layer and the permafrost layer.More importantly,we found that interspecies interactions,including both positive and negative associations,were strongly correlated with bacterial alpha-diversity and played a significant role in community variation and assembly process.Our findings also showed that the community assembly in both the active and permafrost layers was primarily driven by homogeneous selection of deterministic processes,with interspecies interactions accounting for more than 58%and 63%of all assembly mechanisms,respectively.This is the first study to quantify the contribution of bacterial interactions in shaping the bacterial community and its assembly process in permafrost of QTP,highlighting the importance of considering interspecies interactions in future modeling efforts.Our work also emphasizes the necessity of including interspecies interactions in microbial process projections to reduce uncertainty.展开更多
Axle box bearings are critical components of high-speed trains.Localized defects,such as pitting and spalling,on raceways or rollers pose significant threats to the operational safety of railway vehicles.In this work,...Axle box bearings are critical components of high-speed trains.Localized defects,such as pitting and spalling,on raceways or rollers pose significant threats to the operational safety of railway vehicles.In this work,a novel bearing-flexible axle boxvehicle coupling model is established to explore the vibration characteristics of axle box bearings with irregular localized defects.First,based on the contact and kinematic relationship between rollers and raceways,the three-dimensional(3D)bearing force elements are analyzed and formulated.Second,the established model and a flexible axle box are integrated into the vehicle,and the responses of the normal and faulty bearings under the combined excitations of wheel roughness and track irregularities are simulated.Third,the simulation results are verified through a rolling-vibrating test bench for full-scale wheelsets of high-speed trains.The comparisons of the fault-induced repetitive transients in the time-domain and the fault characteristic frequencies in the envelope spectra demonstrate the efficiency of the proposed model.Finally,based on the flexible axle box model,a sensitivity analysis of the accelerometer placements to the bearing faults is carried out,and the optimal one is identified based on both the time-domain and frequency-domain signal-to-noise ratios(SNRs)for engineering applications.展开更多
Purpose-Rail corrugation is still one of the unsolved challenges in the railway industry,and the abnormal vibration and high-frequency noise caused by it constitute serious adverse effects on the operating environment...Purpose-Rail corrugation is still one of the unsolved challenges in the railway industry,and the abnormal vibration and high-frequency noise caused by it constitute serious adverse effects on the operating environment.How to control corrugation has been an important research theme,and understanding corrugation evolution features is the necessary prerequisite.This study aims to investigate the specific evolution characteristics of corrugation from the contact stick-slip perspective.Design/methodology/approach-The formation and development processes of corrugation are analyzed by using a self-designed scale-down test device.Specifically,the contact stick-slip characteristics under different creepage conditions are analyzed and the formation mechanism of corrugation is summarized.On the basis of corrugation formation,the trend of corrugation development is further emphasized to completely describe the whole process of corrugation evolution.Findings-The results show that,under the determined vertical load condition,the contact interface appears the creep force-creepage negative slope phenomenon in the transverse direction.The cause of short-pitch corrugation on the rail wheel surface under the smaller angles of attack may be related to the inherent vibration frequency of the test device,and the cause of corrugation on the rail wheel surface under the larger angles of attack is mainly related to the stick-slip vibration induced by contact creep saturation.Originality/value-This research explores the evolution characteristics of corrugation by adopting a selfdesigned scale-down test device,and elucidates the mechanism of corrugation in detail.展开更多
Transition metal sulfides and oxides with suitable dielectric features have been considered as significant candidates for advanced electromagnetic wave(EMW)absorption systems.However,there is still an urgent need to r...Transition metal sulfides and oxides with suitable dielectric features have been considered as significant candidates for advanced electromagnetic wave(EMW)absorption systems.However,there is still an urgent need to realize controllable regulation of their interfacial polarization behavior.Herein,we prepared dual-phase CoFe_(2)S_(4)/CoFe_(2)O_(4)composites with an average size of~1.43μm through a hydrothermal method.The unique nanoflower morphology promoted the multiple reflection and scattering of the incident EMW,contributing to the improvement of the loss ability.By varying the temperature during the solvothermal reaction,a facile adjustment of the CoFe_(2)O_(4)to CoFe_(2)S_(4)ratio can be realized.The difference in electronegativity and band gap facilitated the directional electron transfer from CoFe_(2)O_(4)side to CoFe_(2)S_(4)side at the dual-phase heterogenous interfaces,leading to spatial charge redistribution and optimized in-plane interfacial polarization.Moreover,the different distribution of CoFe_(2)O_(4)and CoFe_(2)S_(4)phases on different nanosheets exaggerated the deviation of interlayer positive/negative charges from the original equilibrium centers,thereby contributing to the enhancement of interlayer polarization.As a result,CoFe_(2)S_(4)/CoFe_(2)O_(4)with higher dual-phase density exhibited strongest absorption intensity of-77.2 dB with an effective absorption bandwidth of 7.2 GHz at 1.8 mm.This work demonstrates the effective EMW attenuation optimization in transition metal sulfides and oxides and paves the way for modulating multiple interfacial polarization responses in inhomogeneous absorber systems.展开更多
Micro/nanoscale robots(MNRs)have attracted significant interest in various fields because of their flexible design,physically controlled maneuvering,and barrier targeting.The execution of specific functions using MNRs...Micro/nanoscale robots(MNRs)have attracted significant interest in various fields because of their flexible design,physically controlled maneuvering,and barrier targeting.The execution of specific functions using MNRs relies on precise propulsion methods.Among the diverse propulsion techniques,physical propulsion is widely used owing to its noninvasive,safe,and convenient attributes.This review provides an analysis of the propulsion mechanisms in the magnetic,electric,thermal,and ultrasound fields and presents a comprehensive summary of the structures,movements,and applications of various MNRs while also examining their advantages and shortcomings associated with various physical propulsion methods.Finally,challenges and perspectives associated with the future development of MNRs are presented.The content of this review can serve as a multidisciplinary science reference for physicists,bioengineers,clinicians,roboticists,and chemists involved in pharmaceutical design and clinical therapy research.展开更多
The Earth's magnetic field,which has been extensively observed from ground to satellite altitudes over several decades,originates from multiple sources,such as the core dynamo,the conductive mantle,the magnetized ...The Earth's magnetic field,which has been extensively observed from ground to satellite altitudes over several decades,originates from multiple sources,such as the core dynamo,the conductive mantle,the magnetized lithosphere,and the space current systems.Modeling of the lithospheric contribution plays an important role in the geophysical studies and industrial applications.In this paper,we propose a new method for global and regional modeling of the lithospheric magnetic field based on the cubed-sphere.An equivalent dipole source method on a quasi-uniform cubed-sphere grid is employed in the forward modeling.The dipole directions are fixed according to a priori magnetization and the relative intensities are estimated by an inversion procedure of least-squares fitting with minimum model regularization.Several numerical tests are performed to validate the accuracy and efficiency of both forward modeling and inversion procedure.The proposed method is applied to the global and regional modeling based on the latest magnetic data from Swarm Alpha satellite and MSS-1 mission.The model results indicate that the proposed method works quite well for realistic satellite data and MSS-1 data is consistent with the Swarm data in terms of lithospheric field modeling.展开更多
The cooperative control of ride comfort and handling stability in automobile suspension systems presents a significant challenge in intelligent chassis system design.This complexity arises from the high degrees of fre...The cooperative control of ride comfort and handling stability in automobile suspension systems presents a significant challenge in intelligent chassis system design.This complexity arises from the high degrees of freedom,diverse operating conditions,and inherent trade-offs between performance metrics in full-car suspension systems.In this paper,a novel switching control strategy is proposed to better balance ride comfort and handling stability for a full-car suspension system.The system integrates a ride comfort controller and an anti-rollover controller,guided by a new rollover risk assessment indicator that requires fewer state variables.First,a vehicle suspension simplification model approach is introduced,reducing the fourteen-degree-of-freedom full-car suspension model to three two-degree-of-freedom models:vertical,pitch and roll.Based on these simplified models,vertical,roll,and pitch controllers are designed,simplifying the controller design process for full-car suspension systems.The ride comfort controller is constructed using the modal energy method in conjunction with the simplified model controllers,while the roll controller functions as the anti-rollover controller.The proposed rollover risk assessment indicator serves as the switching criterion between handling stability and ride comfort control.Experimental results demonstrate that the proposed switching control strategy effectively adapts to various road conditions,enabling the semi-active variable damping suspension system to perform multi-modal switching.Compared to a well-tuned passive suspension,vertical,roll,and pitch accelerations are reduced by 14.13%,13.02%and 13.08%,respectively,significantly improving ride comfort.Additionally,the system effectively mitigates rollover risk,achieving reductions in roll angle,roll speed,and roll acceleration by 19.69%,16.40%,and 29.96%,respectively,thereby greatly enhancing vehicle safety.Overall,the proposed switching control strategy achieves a successful balance between ride comfort and handling stability,enhancing overall driving performance.展开更多
Gaseous nitrous acid(HONO)is a critical contributor to daytime hydroxyl radical in the troposphere.Livestock farming has been recognized as an overlooked HONO source,but the lack of detailed flux measurements from liv...Gaseous nitrous acid(HONO)is a critical contributor to daytime hydroxyl radical in the troposphere.Livestock farming has been recognized as an overlooked HONO source,but the lack of detailed flux measurements from livestock and poultry wastes would cause uncertainties in modeling its environmental impacts.Here,based on field flux measurements and laboratory experiments,we observed substantial HONO emissions from the composting of swine feces and chicken manure in the warm season,which might be mainly attributed to nitrification process in livestock and poultry wastes.The HONO emission from chicken manure was found to bemuch higher than that from swine feces,and the higher NH3 emission but lower N2O and NO emissions fromchicken manurewere also observed.Considering that the interaction among these nitrogen species during nitrification process,the obviously lower HONO emission from swine feces was likely to be explained by the lack of the total ammonia nitrogen and H+donors in swine feces.Temperature is also a key factor that influences the HONO emission from livestock wastes.In addition,the total HONO emission from swine feces in Chinawas estimated to be approximately 107.7 Gg-N/yr according to the national swine amounts,which is comparable to the national soil HONO emissions,underscoring its non-negligible contribution to regional air quality.Therefore,effective emission control of HONO fromlivestock and poultry wastes should be carried out to further improve air quality in China.展开更多
基金supported by the National Natural Science Foundation of China(42250101)the Macao Foundation。
文摘Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.
基金supported by the National Natural Science Foundation of China (41804067, 42174090, 42250101, and 42250103)the Science Research Project of the Hebei Education Department (BJK2024107)+3 种基金the Hebei Natural Science Foundation (D2022403044)the Opening Fund of the Key Laboratory of Geological Survey and Evaluation of the Ministry of Education (GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources (MSFGPMR2022-4)the Excellent Young Scientist Fund of Hebei GEO University (YQ202403)。
文摘The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic field polarity reversals,the oceanic lithosphere has significant remanent magnetization,which causes magnetic anomaly stripes parallel to the mid-ocean ridges.However,it is difficult to construct a high-resolution lithospheric magnetic field model in oceanic regions with relatively sparse data or no data.Using forward calculated lithospheric magnetic field data based on an oceanic remanent magnetization(ORM) model with physical and geological foundations as a supplement is a feasible approach.We first collect the latest available oceanic crust age grid,plate motion model,geomagnetic polarity timescale,and oceanic lithosphere thermal structure.Combining the assumptions that the paleo geomagnetic field is a geocentric axial dipole field and that the normal oceanic crust moves only in the horizontal direction,we construct a vertically integrated ORM model of the normal oceanic crust with a known age,including the intensity,inclination,and declination.Both the ORM model and the global induced magnetization(GIM) model are then scaled from two aspects between their forward calculated results and the lithospheric magnetic field model LCS-1.One aspect is the difference in their spherical harmonic power spectra,and the other is the misfit between the grid data over the oceans.We last compare the forward calculated lithospheric magnetic anomaly from the scaled ORM and GIM models with the Macao Science Satellite-1(MSS-1) observed data.The comparison results show that the magnetic anomalies over the normal oceanic crust regions at satellite altitude are mainly contributed by the high-intensity remanent magnetization corresponding to the Cretaceous magnetic quiet period.In these regions,the predicted and observed anomalies show good consistency in spatial distribution,whereas their amplitude differences vary across regions.This result suggests that regional ORM construction should be attempted in future work to address these amplitude discrepancies.
基金supported by the National Natural Science Foundation of China(Grant Nos.42474200 and 42174186)Chao Xiong is supported by the Dragon 6 cooperation 2024-2028(Project No.95437).
文摘In this study,we present a comprehensive evaluation of the magnetic field measurements from the Vector Field Magnetometer(VFM)aboard the recently launched Macao Science Satellite-1(MSS-1).One-year data from November 2,2023,to November 1,2024,are considered.The MSS-1 flies with a low inclination(41°)and is designed to provide high-resolution magnetic field measurements,especially for monitoring the evolution of the South Atlantic Anomaly.Earlier studies confirmed the possibility of using MSS-1A data to model the Earth’s main magnetic field(e.g.,Jiang Y et al.,2024).Therefore,in this study we focus on the magnetic signatures related to the external field,which are primarily associated with magnetospheric and ionospheric currents.The global distributions of the magnetic residuals from MSS-1A show a pattern consistent with that derived from the European Space Agency’s Swarm A satellite.A statistical survey of the conjugated observations(withΔt<5 min andΔR<150 km)between the two satellites showed that the difference between their magnetic residuals is within±3 nanoteslas.By separating the magnetic residuals at the noon and midnight hours,we see that the MSS-1A data can effectively capture features of the magnetospheric and ionospheric currents,such as the magnetospheric ring current and ionospheric equatorial electrojet.Moreover,the magnetic residuals from MSS-1A show a diamagnetic effect caused by post-sunset equatorial plasma bubbles,which also suggests that the MSS-1A data have the potential to reveal the ionospheric structures.The comprehensive evaluations performed within this study demonstrate that the MSS-1A provides high-quality magnetic field data reaching the level of the Swarm satellite,which enables a deeper understanding of the modeling of Earth’s magnetic field as well as monitoring of the magnetic environment.
文摘The Macao Science Satellite-1(MSS-1)is the first space science satellite jointly developed on the Chinese mainland and in Macao region.It comprises two satellites,named MSS-1A and MSS-1B,and holds considerable importance in China’s space exploration endeavors.Among these,MSS-1A is the world’s first high-precision scientific satellite dedicated to exploring the geomagnetic field and space environment at low latitudes.Equipped with two high-precision vector magnetometers and one scalar magnetometer,which are integrally installed on a highly stable nonmagnetic optical bench,the MSS-1A enables simultaneous high-precision measurements of both the Earth’s vector magnetic field and its scalar components.Its design integrates several state-of-the-art technologies,including arc-second-level thermal stability control,nonmagnetic thermal control for the optical bench,and ultra-high magnetic cleanliness control.These innovations effectively minimize magnetic interference originating from the satellite itself,thereby substantially improving the precision of geomagnetic field measurements and establishing a robust technical foundation for future magnetic survey satellite constellations.
基金supported by the National Key R&D Program of China(Grant2022YFF0503700)the National Natural Science Foundation of China(42474200 and 42174186)。
文摘The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collecting data in a near-equatorial orbit.Magnetic field data from MSS-1's onboard Vector Fluxgate Magnetometer(VFM),collected at a sample rate of 50 Hz,allows us to detect and investigate sources of magnetic data contamination,from DC to relevant Nyquist frequency.Here we report two types of artificial disturbances in the VFM data.One is V-shaped events concentrated at night,with frequencies sweeping from the Nyquist frequency down to zero and back up.The other is 5-Hz events(ones that exhibit a distinct 5 Hz spectrum peak);these events are always accompanied by intervals of spiky signals,and are clearly related to the attitude control of the satellite.Our analyses show that VFM noise levels in daytime are systematically lower than in nighttime.The daily average noise levels exhibit a period of about 52 days.The V-shaped events are strongly correlated with higher VFM noise levels.
基金financially supported by the National Natural Science Foundation of China(42250102,42250101)the Macao Foundation。
文摘This study presents an inversion method to recover the tidal flow velocity using tidal signals extracted from geomagnetic satellite dataset.By integrating the latest Earth conductivity profile and the Earth's magnetic field model,the limited memory quasi-Newton method(L-BFGS)is used to directly invert seawater flow velocities.We used the radial component of the induced magnetic field as the observed data,constructed an L_(2)-norm-based data misfit term using theoretical response and observed data,and applied smoothness constraints to the ocean flow velocity.The results agree well with the widely used HAMTIDE model in low-and mid-latitude regions,which is attributed to Macao Science Satellite-1's(MSS-1)unique low-inclination orbit of full coverage in these areas.These findings underscore MSS-1's potential to advance research on tidal-induced magnetic fields and their applications in ocean dynamics studies.
基金supported by the National Natural Science Foundation of China(42250101,42250102,42250103)the Macao Foundation,and the Science and Technology Development Fund,Macao SAR(File No.0002/2019/APD)。
文摘The Earth's crust,the outer shell of the Earth,consists of continental crust and oceanic crust.Oceanic crust is created at the mid-oceanic ridge,where it is magnetized in the ambient field of the Earth.As new material is extruded,the crust spreads outward,retaining its magnetization.The reversal of the polarity of the Earth's magnetic field over geologic time leads to a pattern of striped magnetic anomalies.In this study,we carry out a preliminary evaluation on how data from the Macao Science Satellite-1(MSS-1),which has a low orbital inclination,influences inversion models of the oceanic crustal magnetic field when combined with data from the Swarm mission.For our modeling we use an equivalent source method based on a cubed-sphere grid.Our model captures the broad magnetic structure over the North Atlantic Ocean and demonstrates that the trend of magnetic stripes is consistent with the age frame of the oceanic crust.The amplitude of the radial magnetic field at 450 km the North Atlantic Ocean ranges from–11 nT to+8 nT.The addition of MSS-1 observations to Swarm data generates results consistent with the overall magnetic stripe pattern.The lack of short-wavelength scale structure reveals the limitation of high-altitude satellites in portraying fine features and hence lower-altitude observations would be required to delineate a more detailed crustal signature.It is expected to obtain a finer structure of oceanic magnetic stripes by combining low-altitude CHAMP field data and east-west gradient data derived from MSS-1 in future work.
基金Supported by the UK Department for Transport,as part of the UK Shipping Office for Reducing Emissions(UK SHORE)Programme and the UK Engineering and Physical Sciences Research Council(EPSRC)[grant number EP/Y024605/1].
文摘The hydrodynamic performance of high-speed planing hulls has gained considerable interest,with recent advancements in computational fluid dynamics and hull design techniques enhancing the understanding of planing hull hydrodynamics.In this study,we conducted a numerical investigation using the Reynolds-averaged Navier-Stokes approach with overset grids to capture large motions at high speeds.This study aims to improve the hydrodynamic performances of planing hulls,specifically focusing on total resistance,trim,and sinkage.The initial Fridsma hull with a deadrise angle of 20°has been used for validation,demonstrating good agreement with measurements at different Froude numbers.Subsequently,new configurations based on the Fridsma hull have been designed by varying the deadrise angle,number of chines,and transverse steps.Our findings reveal a correlation between the deadrise angle,the number of chines,and the Froude number.As the deadrise angle increases,total resistance also increases.Additionally,a single chine yields superior results at higher Froude numbers,while multiple chines offer advantages at lower values.The introduction of transverse steps consistently increases total resistance,highlighting their role in improving planing hull performance.This research not only offers valuable insights into planing hull design but also leverages state-of-the-art numerical methods to advance the understanding of hydrodynamic behaviors at high ship speeds.
基金supported by grants from the National Natural Science Foundation of China for Excellent Young Scientists Fund Program(No.42222105)the National Natural Science Foundation of China General Program(No.42171144)+1 种基金the Assessment of Ecosystem Carbon Stock and Turnover Patterns in Qinghai Province(No.2021-SFA7-1-1)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2021QZKK0100)。
文摘Bacterial communities play a crucial role in permafrost biogeochemical cycling and ecosystem function maintenance.Bacterial interaction is one of the main factors in shaping soil bacterial communities.However,how would bacterial interaction influence the bacterial communities in permafrost of the Qinghai-Tibet Plateau(QTP)remains largely unknown.Here we collected paired soil samples from both the active and permafrost layers of two typical QTP permafrost regions in October 2020 for Tuotuohe River(TTH)and May 2022 for Aerjin(ARJ),and investigated the bacterial communities and the role of interactions in structuring the bacterial community and its assembly process through amplicon sequencing of the 16S rRNA gene.Our study revealed distinct bacterial communities,with significant differences in the relative abundances of Proteobacteria(P<0.05),Acidobacteriota(P<0.001),Bacteroidota(P<0.05),and Planctomycetota(P<0.001)between the active layer and the permafrost layer.More importantly,we found that interspecies interactions,including both positive and negative associations,were strongly correlated with bacterial alpha-diversity and played a significant role in community variation and assembly process.Our findings also showed that the community assembly in both the active and permafrost layers was primarily driven by homogeneous selection of deterministic processes,with interspecies interactions accounting for more than 58%and 63%of all assembly mechanisms,respectively.This is the first study to quantify the contribution of bacterial interactions in shaping the bacterial community and its assembly process in permafrost of QTP,highlighting the importance of considering interspecies interactions in future modeling efforts.Our work also emphasizes the necessity of including interspecies interactions in microbial process projections to reduce uncertainty.
基金supported by the National Natural Science Foundation of China(Nos.12372056,12032017,12393783)the S&T Program of Hebei of China(No.24465001D)。
文摘Axle box bearings are critical components of high-speed trains.Localized defects,such as pitting and spalling,on raceways or rollers pose significant threats to the operational safety of railway vehicles.In this work,a novel bearing-flexible axle boxvehicle coupling model is established to explore the vibration characteristics of axle box bearings with irregular localized defects.First,based on the contact and kinematic relationship between rollers and raceways,the three-dimensional(3D)bearing force elements are analyzed and formulated.Second,the established model and a flexible axle box are integrated into the vehicle,and the responses of the normal and faulty bearings under the combined excitations of wheel roughness and track irregularities are simulated.Third,the simulation results are verified through a rolling-vibrating test bench for full-scale wheelsets of high-speed trains.The comparisons of the fault-induced repetitive transients in the time-domain and the fault characteristic frequencies in the envelope spectra demonstrate the efficiency of the proposed model.Finally,based on the flexible axle box model,a sensitivity analysis of the accelerometer placements to the bearing faults is carried out,and the optimal one is identified based on both the time-domain and frequency-domain signal-to-noise ratios(SNRs)for engineering applications.
基金funded by the Science and Technology Research Project of Universities in Hebei Province(No.QN2025314)Youth Specialization Fund for State Key Laboratory(No.50110010766)Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety(No.R202405).
文摘Purpose-Rail corrugation is still one of the unsolved challenges in the railway industry,and the abnormal vibration and high-frequency noise caused by it constitute serious adverse effects on the operating environment.How to control corrugation has been an important research theme,and understanding corrugation evolution features is the necessary prerequisite.This study aims to investigate the specific evolution characteristics of corrugation from the contact stick-slip perspective.Design/methodology/approach-The formation and development processes of corrugation are analyzed by using a self-designed scale-down test device.Specifically,the contact stick-slip characteristics under different creepage conditions are analyzed and the formation mechanism of corrugation is summarized.On the basis of corrugation formation,the trend of corrugation development is further emphasized to completely describe the whole process of corrugation evolution.Findings-The results show that,under the determined vertical load condition,the contact interface appears the creep force-creepage negative slope phenomenon in the transverse direction.The cause of short-pitch corrugation on the rail wheel surface under the smaller angles of attack may be related to the inherent vibration frequency of the test device,and the cause of corrugation on the rail wheel surface under the larger angles of attack is mainly related to the stick-slip vibration induced by contact creep saturation.Originality/value-This research explores the evolution characteristics of corrugation by adopting a selfdesigned scale-down test device,and elucidates the mechanism of corrugation in detail.
基金financially supported by Ningbo Yongjiang Talent Program(No.2024A-421-G)Ningbo Key Research and Development Program(No.2024Z210)+1 种基金Ningbo Key Laboratory of Molecular Target Screening and Application(No.2023-BZDS)Ningbo Top Medical and Health Research Program(No.2023030514)
文摘Transition metal sulfides and oxides with suitable dielectric features have been considered as significant candidates for advanced electromagnetic wave(EMW)absorption systems.However,there is still an urgent need to realize controllable regulation of their interfacial polarization behavior.Herein,we prepared dual-phase CoFe_(2)S_(4)/CoFe_(2)O_(4)composites with an average size of~1.43μm through a hydrothermal method.The unique nanoflower morphology promoted the multiple reflection and scattering of the incident EMW,contributing to the improvement of the loss ability.By varying the temperature during the solvothermal reaction,a facile adjustment of the CoFe_(2)O_(4)to CoFe_(2)S_(4)ratio can be realized.The difference in electronegativity and band gap facilitated the directional electron transfer from CoFe_(2)O_(4)side to CoFe_(2)S_(4)side at the dual-phase heterogenous interfaces,leading to spatial charge redistribution and optimized in-plane interfacial polarization.Moreover,the different distribution of CoFe_(2)O_(4)and CoFe_(2)S_(4)phases on different nanosheets exaggerated the deviation of interlayer positive/negative charges from the original equilibrium centers,thereby contributing to the enhancement of interlayer polarization.As a result,CoFe_(2)S_(4)/CoFe_(2)O_(4)with higher dual-phase density exhibited strongest absorption intensity of-77.2 dB with an effective absorption bandwidth of 7.2 GHz at 1.8 mm.This work demonstrates the effective EMW attenuation optimization in transition metal sulfides and oxides and paves the way for modulating multiple interfacial polarization responses in inhomogeneous absorber systems.
基金the National Natural Science Foundation of China(Nos.U2130128 and 12102376)Yanzhao Young Scientist Project from Natural Science Foundation of Hebei Province(No.B2023205040)+6 种基金Basic Research Cooperation Special Foundation of Beijing-Tianjin-Hebei Region(Nos.H2022205047,22JCZXJC00060,and E3B33911DF)Central Government Guiding Local Science and Technology Development Project(No.216Z4302G)Hebei Administration for Market Supervision Science and Technology Project List(No.2023ZC03)Innovation Capability Improvement Plan Project of Hebei Province(No.22567604H)Ph.D Scientific Research Start-up Fund(No.L2023B18)College Student’s Innovation and Entrepreneurship Training Plan Program(No.S202410094046)of Hebei Normal Universitythe Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011592).
文摘Micro/nanoscale robots(MNRs)have attracted significant interest in various fields because of their flexible design,physically controlled maneuvering,and barrier targeting.The execution of specific functions using MNRs relies on precise propulsion methods.Among the diverse propulsion techniques,physical propulsion is widely used owing to its noninvasive,safe,and convenient attributes.This review provides an analysis of the propulsion mechanisms in the magnetic,electric,thermal,and ultrasound fields and presents a comprehensive summary of the structures,movements,and applications of various MNRs while also examining their advantages and shortcomings associated with various physical propulsion methods.Finally,challenges and perspectives associated with the future development of MNRs are presented.The content of this review can serve as a multidisciplinary science reference for physicists,bioengineers,clinicians,roboticists,and chemists involved in pharmaceutical design and clinical therapy research.
基金supported by the National Natural Science Foundation of China(42250101,42250102,42250103,12250013)the Macao Foundation。
文摘The Earth's magnetic field,which has been extensively observed from ground to satellite altitudes over several decades,originates from multiple sources,such as the core dynamo,the conductive mantle,the magnetized lithosphere,and the space current systems.Modeling of the lithospheric contribution plays an important role in the geophysical studies and industrial applications.In this paper,we propose a new method for global and regional modeling of the lithospheric magnetic field based on the cubed-sphere.An equivalent dipole source method on a quasi-uniform cubed-sphere grid is employed in the forward modeling.The dipole directions are fixed according to a priori magnetization and the relative intensities are estimated by an inversion procedure of least-squares fitting with minimum model regularization.Several numerical tests are performed to validate the accuracy and efficiency of both forward modeling and inversion procedure.The proposed method is applied to the global and regional modeling based on the latest magnetic data from Swarm Alpha satellite and MSS-1 mission.The model results indicate that the proposed method works quite well for realistic satellite data and MSS-1 data is consistent with the Swarm data in terms of lithospheric field modeling.
基金Supported by the Australian Research Council’s Discovery Project(Grant No.DP200100149)Taishan Scholars Program of Shandong Province(Grant No.tsqn202211062)Chinses Scholarship Council(Grant No.202006690005).
文摘The cooperative control of ride comfort and handling stability in automobile suspension systems presents a significant challenge in intelligent chassis system design.This complexity arises from the high degrees of freedom,diverse operating conditions,and inherent trade-offs between performance metrics in full-car suspension systems.In this paper,a novel switching control strategy is proposed to better balance ride comfort and handling stability for a full-car suspension system.The system integrates a ride comfort controller and an anti-rollover controller,guided by a new rollover risk assessment indicator that requires fewer state variables.First,a vehicle suspension simplification model approach is introduced,reducing the fourteen-degree-of-freedom full-car suspension model to three two-degree-of-freedom models:vertical,pitch and roll.Based on these simplified models,vertical,roll,and pitch controllers are designed,simplifying the controller design process for full-car suspension systems.The ride comfort controller is constructed using the modal energy method in conjunction with the simplified model controllers,while the roll controller functions as the anti-rollover controller.The proposed rollover risk assessment indicator serves as the switching criterion between handling stability and ride comfort control.Experimental results demonstrate that the proposed switching control strategy effectively adapts to various road conditions,enabling the semi-active variable damping suspension system to perform multi-modal switching.Compared to a well-tuned passive suspension,vertical,roll,and pitch accelerations are reduced by 14.13%,13.02%and 13.08%,respectively,significantly improving ride comfort.Additionally,the system effectively mitigates rollover risk,achieving reductions in roll angle,roll speed,and roll acceleration by 19.69%,16.40%,and 29.96%,respectively,thereby greatly enhancing vehicle safety.Overall,the proposed switching control strategy achieves a successful balance between ride comfort and handling stability,enhancing overall driving performance.
基金supported by the National Key Research and Development Program(No.2022YFC3701102)the National Natural Science Foundation of China(Nos.41905109,42405114,and 42105105).
文摘Gaseous nitrous acid(HONO)is a critical contributor to daytime hydroxyl radical in the troposphere.Livestock farming has been recognized as an overlooked HONO source,but the lack of detailed flux measurements from livestock and poultry wastes would cause uncertainties in modeling its environmental impacts.Here,based on field flux measurements and laboratory experiments,we observed substantial HONO emissions from the composting of swine feces and chicken manure in the warm season,which might be mainly attributed to nitrification process in livestock and poultry wastes.The HONO emission from chicken manure was found to bemuch higher than that from swine feces,and the higher NH3 emission but lower N2O and NO emissions fromchicken manurewere also observed.Considering that the interaction among these nitrogen species during nitrification process,the obviously lower HONO emission from swine feces was likely to be explained by the lack of the total ammonia nitrogen and H+donors in swine feces.Temperature is also a key factor that influences the HONO emission from livestock wastes.In addition,the total HONO emission from swine feces in Chinawas estimated to be approximately 107.7 Gg-N/yr according to the national swine amounts,which is comparable to the national soil HONO emissions,underscoring its non-negligible contribution to regional air quality.Therefore,effective emission control of HONO fromlivestock and poultry wastes should be carried out to further improve air quality in China.