This paper presented a novel and environmentally friendly approach for recovering platinum group metals(PGMs)from spent automotive exhaust catalysts.The study employed lead slag and waste graphite electrodes as raw ma...This paper presented a novel and environmentally friendly approach for recovering platinum group metals(PGMs)from spent automotive exhaust catalysts.The study employed lead slag and waste graphite electrodes as raw materials,incorporating CaO as an additive to fine-tune the slag's viscosity and density.By reducing FeO in the lead slag using waste graphite electrodes,pure Fe was obtained,effectively trapping the PGMs from the exhausted catalysts.The study explored the effects of reductant addition,trapping duration,slag basicity,and trapping temperature on the recovery rate of PGMs.The results indicated that a maximum recovery rate of 97.86%was achieved when the reductant was added at 1.5 times the theoretical amount,with a trapping duration of 60 minutes,a slag basicity of 0.7,and a trapping temperature of 1600℃.This research offered a greener pathway for the recovery of PGMs from spent automotive exhaust catalysts.展开更多
基金Funded by the Natural Science Foundation of Henan(No.252300421563)the Key Research Projects of Henan Provincial Colleges and Universities(No.25B450001)+3 种基金the Basic and Frontier Research Project of Nanyang(No.24JCQY032)National Natural Science Foundation of China(No.52201044)the Key Specialized Research&Development and Promotion Project(Scientific and Technological Project)of Henan Province(No.232102221022)the Basic and Frontier Technology Research Project of Nanyang(No.23JCQY1001)。
文摘This paper presented a novel and environmentally friendly approach for recovering platinum group metals(PGMs)from spent automotive exhaust catalysts.The study employed lead slag and waste graphite electrodes as raw materials,incorporating CaO as an additive to fine-tune the slag's viscosity and density.By reducing FeO in the lead slag using waste graphite electrodes,pure Fe was obtained,effectively trapping the PGMs from the exhausted catalysts.The study explored the effects of reductant addition,trapping duration,slag basicity,and trapping temperature on the recovery rate of PGMs.The results indicated that a maximum recovery rate of 97.86%was achieved when the reductant was added at 1.5 times the theoretical amount,with a trapping duration of 60 minutes,a slag basicity of 0.7,and a trapping temperature of 1600℃.This research offered a greener pathway for the recovery of PGMs from spent automotive exhaust catalysts.