Automated sleep stages classification facilitates clinical experts in conducting treatment for sleep disorders,as it is more time-efficient concerning the analysis of whole-night polysomnography(PSG).However,most of t...Automated sleep stages classification facilitates clinical experts in conducting treatment for sleep disorders,as it is more time-efficient concerning the analysis of whole-night polysomnography(PSG).However,most of the existing research only focused on public databases with channel systems incompatible with the current clinical measurements.To narrow the gap between theoretical models and real clinical practice,we propose a novel deep learning model,by combining the vision transformer with supervised contrastive learning,realizing the efficient sleep stages classification.Experimental results show that the model facilitates an easier classification of multi-channel PSG signals.The mean F1-scores of 79.2%and 76.5%on two public databases outperform the previous studies,showing the model’s great capability,and the performance of the proposed method on the children’s small database also presents a high mean accuracy of 88.6%.Our proposed model is validated not only on the public databases but the provided clinical database to strictly evaluate its clinical usage in practice.展开更多
A new parameter coordination and robust optimization approach for multidisciplinary design is presented. Firstly, the constraints network model is established to support engineering change, coordination and optimizati...A new parameter coordination and robust optimization approach for multidisciplinary design is presented. Firstly, the constraints network model is established to support engineering change, coordination and optimization. In this model, interval boxes are adopted to describe the uncertainty of design parameters quantitatively to enhance the design robustness. Secondly, the parameter coordination method is presented to solve the constraints network model, monitor the potential conflicts due to engineering changes, and obtain the consistency solution space corresponding to the given product specifications. Finally, the robust parameter optimization model is established, and genetic arithmetic is used to obtain the robust optimization parameter. An example of bogie design is analyzed to show the scheme to be effective.展开更多
基金the National Natural Science Foundation of China(No.52375254)the Interdisciplinary Program of Shanghai Jiao Tong University(No.21X010301670)the Open Project Program of SJTU-Pinghu Institute of Intelligent Optoelectronics(No.2022SPIOE104)。
文摘Automated sleep stages classification facilitates clinical experts in conducting treatment for sleep disorders,as it is more time-efficient concerning the analysis of whole-night polysomnography(PSG).However,most of the existing research only focused on public databases with channel systems incompatible with the current clinical measurements.To narrow the gap between theoretical models and real clinical practice,we propose a novel deep learning model,by combining the vision transformer with supervised contrastive learning,realizing the efficient sleep stages classification.Experimental results show that the model facilitates an easier classification of multi-channel PSG signals.The mean F1-scores of 79.2%and 76.5%on two public databases outperform the previous studies,showing the model’s great capability,and the performance of the proposed method on the children’s small database also presents a high mean accuracy of 88.6%.Our proposed model is validated not only on the public databases but the provided clinical database to strictly evaluate its clinical usage in practice.
基金supported by the National Research Foundation,Prime Minister’s Office,Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme (CNSB)。
基金This project is supported by National Natural Science Foundation of China (No.60304015, No.50575142).
文摘A new parameter coordination and robust optimization approach for multidisciplinary design is presented. Firstly, the constraints network model is established to support engineering change, coordination and optimization. In this model, interval boxes are adopted to describe the uncertainty of design parameters quantitatively to enhance the design robustness. Secondly, the parameter coordination method is presented to solve the constraints network model, monitor the potential conflicts due to engineering changes, and obtain the consistency solution space corresponding to the given product specifications. Finally, the robust parameter optimization model is established, and genetic arithmetic is used to obtain the robust optimization parameter. An example of bogie design is analyzed to show the scheme to be effective.