文章基于中国知网中2009—2023年间的169篇文献和Web of Science中2016—2023年间的572篇文献,使用Citespace V.5.0.R4软件梳理了国内外零工研究热点。结果表明:一是国内外研究都重点关注共享经济、平台经济、数字平台等新经济模式。二...文章基于中国知网中2009—2023年间的169篇文献和Web of Science中2016—2023年间的572篇文献,使用Citespace V.5.0.R4软件梳理了国内外零工研究热点。结果表明:一是国内外研究都重点关注共享经济、平台经济、数字平台等新经济模式。二是国外比国内研究更关注零工工作者与数字平台工作及其算法的关系。三是自2018年,国内热点逐渐从零工市场与共享经济转向在线平台和法律监管;自2019年,国外热点逐渐聚焦于零工工作者。文后讨论了零工研究的未来方向,以期为推进零工研究提供有益参考。展开更多
The high strength and stability of the full-lamellar structure guarantee the industrial application of theβ-solidifyingγ-TiAl alloys.However,it is a huge challenge to design an alloy with good hot-deformability as w...The high strength and stability of the full-lamellar structure guarantee the industrial application of theβ-solidifyingγ-TiAl alloys.However,it is a huge challenge to design an alloy with good hot-deformability as well as the full-lamellar structure.The low-cost Ti-42.5Al-2Mn-0.4Mo-0.1B-0.1C(at.%)alloy was designed,which undergoes bothβandαsingle-phase region during the solidification.It is found that the full-lamellar structure can be obtained by the solution heat treatment at 1230℃ for 20 min and then aging treatment at 800℃ for 3 h.Interestingly,a new microstructure,namely,the pearlitic-like microstructure(PM)induced by theα_(2)/γ→βo+γcellular reaction was observed when the aging temperature is increased to above 800℃.The volume fraction of the PM is gradually increased from 0%to 25.5%,65%,and 94%according to elevated aging temperature from 800 to 900,1000,and 1050℃,respectively.The mechanism of the reducedα_(2)/γlamellae and PM formation was discussed regarding the heterogeneous distribution ofβstabilizing elements and the interface energy stored inα_(2)/γlamellae.展开更多
This study analyzed through-thickness distribution of residual stress in a 106 mm ultra-thick TC4 titanium alloy electron beam welded(EBW)joint after post weld heat treatment(PWHT)using X-ray diffraction(XRD)and deep-...This study analyzed through-thickness distribution of residual stress in a 106 mm ultra-thick TC4 titanium alloy electron beam welded(EBW)joint after post weld heat treatment(PWHT)using X-ray diffraction(XRD)and deep-hole drilling(DHD)methods,and investigated the microstructure and mechanical properties.During the PWHT at 600℃,a phase transformation(β→α)occurred in the EBW joint and affected the residual stress distribution and mechanical properties.The surface residual stress was mainly compressive stress,while the internal residual stress was mainly tensile stress in the welded joint.For the as-welded joint,the absolute value of surface residual stress was higher than the absolute value of internal residual stress.After PWHT,the residual stress in the treated joint was substantially reduced compared to the as-welded joint,particularly the surface stress,which relieved from−425 to−90 MPa.However,the residual stress relief effect had minimal positive impact on the internal region at 600℃.PWHT resulted in a shift of the joint fracture location from the fusion zone(FZ)to the base metal(BM),and therefore exerted no noticeable effect on the joint strength,but increased the joint elongation significantly.This study provides valuable insights into the regulation of residual stress distribution of ultra-thick titanium alloy plates.展开更多
文摘文章基于中国知网中2009—2023年间的169篇文献和Web of Science中2016—2023年间的572篇文献,使用Citespace V.5.0.R4软件梳理了国内外零工研究热点。结果表明:一是国内外研究都重点关注共享经济、平台经济、数字平台等新经济模式。二是国外比国内研究更关注零工工作者与数字平台工作及其算法的关系。三是自2018年,国内热点逐渐从零工市场与共享经济转向在线平台和法律监管;自2019年,国外热点逐渐聚焦于零工工作者。文后讨论了零工研究的未来方向,以期为推进零工研究提供有益参考。
基金the Jihua Laboratory Scientific Research Project(No.X210291TL210)the National Natural Science Foundation of China(No.51971215).
文摘The high strength and stability of the full-lamellar structure guarantee the industrial application of theβ-solidifyingγ-TiAl alloys.However,it is a huge challenge to design an alloy with good hot-deformability as well as the full-lamellar structure.The low-cost Ti-42.5Al-2Mn-0.4Mo-0.1B-0.1C(at.%)alloy was designed,which undergoes bothβandαsingle-phase region during the solidification.It is found that the full-lamellar structure can be obtained by the solution heat treatment at 1230℃ for 20 min and then aging treatment at 800℃ for 3 h.Interestingly,a new microstructure,namely,the pearlitic-like microstructure(PM)induced by theα_(2)/γ→βo+γcellular reaction was observed when the aging temperature is increased to above 800℃.The volume fraction of the PM is gradually increased from 0%to 25.5%,65%,and 94%according to elevated aging temperature from 800 to 900,1000,and 1050℃,respectively.The mechanism of the reducedα_(2)/γlamellae and PM formation was discussed regarding the heterogeneous distribution ofβstabilizing elements and the interface energy stored inα_(2)/γlamellae.
基金supported by the National Key Research and Development Program of China(No.2023YFC2810700)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021193)the Science and Technology Cooperation Project between Jilin Province and Chinese Academy of Sciences(No.2024SYHZ0032).
文摘This study analyzed through-thickness distribution of residual stress in a 106 mm ultra-thick TC4 titanium alloy electron beam welded(EBW)joint after post weld heat treatment(PWHT)using X-ray diffraction(XRD)and deep-hole drilling(DHD)methods,and investigated the microstructure and mechanical properties.During the PWHT at 600℃,a phase transformation(β→α)occurred in the EBW joint and affected the residual stress distribution and mechanical properties.The surface residual stress was mainly compressive stress,while the internal residual stress was mainly tensile stress in the welded joint.For the as-welded joint,the absolute value of surface residual stress was higher than the absolute value of internal residual stress.After PWHT,the residual stress in the treated joint was substantially reduced compared to the as-welded joint,particularly the surface stress,which relieved from−425 to−90 MPa.However,the residual stress relief effect had minimal positive impact on the internal region at 600℃.PWHT resulted in a shift of the joint fracture location from the fusion zone(FZ)to the base metal(BM),and therefore exerted no noticeable effect on the joint strength,but increased the joint elongation significantly.This study provides valuable insights into the regulation of residual stress distribution of ultra-thick titanium alloy plates.