Whether hydraulic fractures could connect multiple gas zones in the vertical plane is the key to fracturing treatment to jointly exploit coalbed methane and tight sandstone gas through integrative hydraulic fracturing...Whether hydraulic fractures could connect multiple gas zones in the vertical plane is the key to fracturing treatment to jointly exploit coalbed methane and tight sandstone gas through integrative hydraulic fracturing in tight sandstone–coal interbedded formations. Laboratory true triaxial hydraulic fracturing experiments were conducted on layered specimens with di erent combination types of natural sandstone and coal to simulate the propagation behavior of hydraulic fractures. The effects of the fracture initiation position, fracturing fluid viscosity and injection rate were discussed. The results showed that di erent fracture morphologies could be found. When initiating from coal seams, three patterns of fracture initiation and propagation were obtained:(1) The main hydraulic fracture initiated and propagated along the natural fractures and then diverged due to the effects of in situ stress and formed secondary fractures.(2) The hydraulic fracture initiated and propagated in the direction of the maximum horizontal stress.(3) Multiple fractures initiated and propagated at the same time. With the same fracturing fluid viscosity and injection rate, the hydraulic fractures initiating in sandstones had greater chances than those in coal seams to penetrate interfaces and enter neighboring layers. Excessively small or large fracturing fluid viscosity and injection rate would do harm to the vertical extension height of the induced fracture and improvement of the stimulated reservoir volume. Compared with operation parameters(fracturing fluid viscosity and injection rate), the natural weak planes in coals were considered to be the key factor that a ected the fracture propagation path. The experimental results would make some contributions to the development of tight sandstone–coal interbedded reservoirs.展开更多
MXenes have attracted increasing research enthusiasm owing to their unique physical and chemical properties.Although MXenes exhibit exciting potential in cations adsorption due to their unique surface groups,the adsor...MXenes have attracted increasing research enthusiasm owing to their unique physical and chemical properties.Although MXenes exhibit exciting potential in cations adsorption due to their unique surface groups,the adsorption capacity is limited by the low specific surface area and undeveloped porosity.Our work aims at enhancing the adsorption performance of a well-known MXene,Ti3C2Tx,for methylene blue(MB)by decorating tiny ZIF-8 nanoparticles in the interlayer.After the incorporation of ZIF-8,suitable interspace in the layers resulting from the distribution of tiny ZIF-8 appears.When employing in MB,the adsorption capacity of composites can reach up to 107 mg·g^(-1) while both ZIF-8(3 mg·g^(-1))and Ti_(3)C_(2)Tx(9mg·g^(-1))show nearly no adsorption capacity.The adsorption mechanism was explored,and the good adsorption capacity is caused by the synergistic effect of ZIF-8 and Ti_(3)C_(2)Tx,for neither of them is of suitable interspace or surface groups for MB adsorption.Our work might pave the way for constructing functional materials based on the introduction of nanoparticles into layered materials for various adsorption applications.展开更多
As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation ...As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation and fragmentation.This ultimately leads to a decrease in cell capacity.The trends of volume expansion and capacity change of the SiO/graphite(SiO/C)composite electrode during cycling were investigated via in situ expansion monitoring.First,a series of expansion test schemes were designed,and the linear relationship between negative electrode expansion and cell capacity degradation was quantitatively analyzed.Then,the effects of different initial pressures on the long-term cycling performance of the cell were evaluated.Finally,the mechanism of their effects was analyzed by scanning electron microscope.The results show that after 50 cycles,the cell capacity decreases from 2.556 mAh to 1.689 mAh,with a capacity retention ratio(CRR)of only 66.08%.A linear relationship between the capacity retention ratio and thickness expansion was found.Electrochemical measurements and scanning electron microscope images demonstrate that intense stress inhibits the lithiation of the negative electrode and that the electrode is more susceptible to irreversible damage during cycling.Overall,these results reveal the relationship between the cycling performance of SiO and the internal pressure of the electrode from a macroscopic point of view,which provides some reference for the application of SiO/C composite electrodes in lithium-ion batteries.展开更多
Lithium-oxygen batteries attract considerable attention due to exceptionally high theoretical energy density,while the development remains in its early stage.As is widely suggested,the solution mechanism induces great...Lithium-oxygen batteries attract considerable attention due to exceptionally high theoretical energy density,while the development remains in its early stage.As is widely suggested,the solution mechanism induces greater discharge capacity,while the surface mechanism induces greater cycle stability.Therefore,battery performance can be improved by adjusting the reaction mechanism.Previous studies predominantly focus on extremely thin or flat electrodes.In contrast,this work utilizes thick electrodes,emphasizing the importance of mass transport.Given that the electrolyte solvent is the main site of mass transport,the effects of two typical solvents on mass transport and battery performance are investigated:dimethyl sulfoxide with low viscosity and a high O_(2) diffusion rate and tetraethylene glycol dimethyl ether with high O_(2) solubility and high Li+transport capability.The results reveal a novel pathway for reaction mechanism induction where the mechanism varies with the spatial position of the electrode.As the spatial distribution of the electrode progresses,a layered appearance of solution mechanism products,transition state products,and surface mechanism products emerges,which is attributed to the increase in the mass transfer resistance.This work presents a distinct perspective on the way solvents influence reaction pathways and offers a new approach to regulating reaction pathways.展开更多
1.Introduction With the increasing demand for petroleum and natural gas resources,along with technological advancements in exploration and production,the primary frontier of oil and gas resources has shifted from conv...1.Introduction With the increasing demand for petroleum and natural gas resources,along with technological advancements in exploration and production,the primary frontier of oil and gas resources has shifted from conventional oil and gas development to the domains of“Two Deeps,One Unconventional,One Mature,”which include deep onshore,deepwater,unconventional resources,and mature oilfields[1].展开更多
Lost circulation of drilling fluid is one of the most common and costly problems in drilling operations.This highlights the importance of wellbore strengthening treatment sthat can utilize lost circulation materials(L...Lost circulation of drilling fluid is one of the most common and costly problems in drilling operations.This highlights the importance of wellbore strengthening treatment sthat can utilize lost circulation materials(LCMs)to seal fractures associated with the wellbore.In this work,a numerical model accounting for the deformation of surrounding rock,fluid flow in the fracture,fracture propagation,and the transport of LCMs is presented to investigate the wellbore strengthening,from the fracture initiation to the fracture arrest,due to plugs formed by LCMs.The equations governing the rock deformation and fluid flow are solved by the dual boundary element method and the finite volume method,respectively.The transport of LCMs is solved based on an empirical constitutive model in suspension flow,and several characteristic quantities are derived by dimensional analysis.It is found that two dimensionless parameters,dimensionless toughness and normalized initial particle concentration,control the migration of LCM particles.The numerical results show that the dimensionless toughness influences the entrance and bridging of LCMs while the initial concentration controls the location of the particle bridging.When the initial concentration is larger than 0.8,the particle bridging tends to occur near the fracture entry.Conversely,when the initial concentration is less than 0.8,the particle bridging occurs near the fracture tip.This work provides an effective tool to predict the LCM transport and plugging in the wellbore strengthening process.展开更多
Gastric cancer(GC)is characterized by high morbidity and mortality rates.Chinese agarwood comprises the resin-containing wood of Aquilaria sinensis(Lour.)Gilg.,traditionally utilized for treating asthma,cardiac ischem...Gastric cancer(GC)is characterized by high morbidity and mortality rates.Chinese agarwood comprises the resin-containing wood of Aquilaria sinensis(Lour.)Gilg.,traditionally utilized for treating asthma,cardiac ischemia,and tumors.However,comprehensive research regarding its anti-GC effects and underlying mechanisms remains limited.In this study,Chinese agarwood petroleum ether extract(CAPEE)demonstrated potent cytotoxicity against human GC cells,with half maximal inhibitory concentration(IC_(50))values for AGS,HGC27,and MGC803 cells of 2.89,2.46,and 2.37μg·mL^(−1),respectively,at 48 h.CAPEE significantly induced apoptosis in these GC cells,with B-cell lymphoma-2(BCL-2)associated X protein(BAX)/BCL-2 antagonist killer 1(BAK)likely mediating CAPEE-induced apoptosis.Furthermore,CAPEE induced G_(0)/G_(1)phase cell cycle arrest in human GC cells via activation of the deoxyribonucleic acid(DNA)damage-p21-cyclin D1/cyclin-dependent kinase 4(CDK4)signaling axis,and increased Fe^(2+),lipid peroxides and reactive oxygen species(ROS)levels,thereby inducing ferroptosis.Ribonucleic acid(RNA)sequencing,real-time quantitative polymerase chain reaction(RT-qPCR),and Western blotting analyses revealed CAPEE-mediated upregulation of heme oxygenase-1(HO-1)in human GC cells.RNA interference studies demonstrated that HO-1 knockdown reduced CAPEE sensitivity and inhibited CAPEE-induced ferroptosis in human GC cells.Additionally,CAPEE administration exhibited robust in vivo anti-GC activity without significant toxicity in nude mice while inhibiting tumor cell growth and promoting apoptosis in tumor tissues.These findings indicate that CAPEE suppresses human GC cell growth through upregulation of the DNA damage-p21-cyclin D1/CDK4 signaling axis and HO-1-mediated ferroptosis,suggesting its potential as a candidate drug for GC treatment.展开更多
Perovskite ferroelectrics play an essential role in modern science and technology.The excellent properties of perovskites are closely related to their lattice dynamics.Potassium tantalate niobate(KTa_(1-x)Nb_(x)O_(3),...Perovskite ferroelectrics play an essential role in modern science and technology.The excellent properties of perovskites are closely related to their lattice dynamics.Potassium tantalate niobate(KTa_(1-x)Nb_(x)O_(3),abbreviated as KTN)is a typical solid-solution perovskite with superior properties.Although the optical and electrical performances of KTN crystals have been widely explored,information on their lattice dynamics is still scarce,which partially limits the research and performance optimization of KTN.As a solid-solution,spontaneous polarization of KTN exhibits strong tunability,and there is stress within KTN.Here,we performed first-principles calculations in conjunction with experiments to investigate the polarization-and stress-related lattice dynamics in KTN.We assigned the vibration modes of observed Raman peaks,and established the relationship between spontaneous polarization and vibration.Especially,the lattice dynamics evolution of KTN crystal under stress was investigated.And the results provide insights into the regulatory effect of stress on dielectric property from the perspective of lattice dynamics.Finally,the variation trends of phonons under stress,as well as the mechanism of stress effect in tetragonal perovskites were explained.The conclusions drawn for KTN crystal were generalized to tetragonal ferroelectric systems.Our results help to reflect spontaneous polarization and structural characteristics distribution through non-destructive Raman spectra,and give a reference for improving performance by regulating lattice dynamics.The findings will hopefully guide research on performance origin and refined design of perovskite functional materials.展开更多
Solid oxide fuel cell(SOFC)is a promising power generation technology with high efficiency and can operate with a wide range of fuels.Although H2 delivery and storage are still hurdles,natural gas is readily accessibl...Solid oxide fuel cell(SOFC)is a promising power generation technology with high efficiency and can operate with a wide range of fuels.Although H2 delivery and storage are still hurdles,natural gas is readily accessible through existing pipeline infrastructure and therefore stands as a viable fuel candidate for SOFC.Owing to the high operating temperature,the methane in natural gas can be directly reformed in the anode of an SOFC.However,mechanical failure remains a critical issue and hinders the prevalence of traditional planar SOFCs.A novel flat-tubular structure with symmetrical double-sided cathodes was previously proposed to improve mechanical durability.In this work,the performance of a methane-fueled SOFC with symmetrical double-sided cathodes is analyzed with a numerical multiphysics model.The distributions of different physical fields in the SOFC are investigated.Special attention is paid to stress analysis,which is closely related to the mechanical stability of an SOFC.Furthermore,the CH_(4)-fueled and H_(2)-fueled SOFCs are also compared in terms of the distribution of thermal stress.A lower first principal stress is observed for CH_(4)-fueled flat-tubular SOFC,demonstrating a reduced probability of mechanical failures and potentially extended lifespan.展开更多
Solid strong base catalysts have high potentials in a variety of reactions due to the advantages of negligible corrosion,easy separation,and high efficiency.However,two issues hinder the applications of such catalysts...Solid strong base catalysts have high potentials in a variety of reactions due to the advantages of negligible corrosion,easy separation,and high efficiency.However,two issues hinder the applications of such catalysts seriously,namely aggregation of basic sites and leaching of active species during reactions.The development of solid strong base catalysts with active sites that are highly dispersed and stable remains a pronounced challenge.In this work,we employed a two-step reduction strategy to anchor Na single atoms on nitrogen-doped porous carbon(NPC)support,producing a high-performance solid strongly basic catalyst named as Na1/NPC.The alkali precursor NaNO3was converted to Na_(2)O on NPC at 400℃,in which conventional solid base catalyst Na_(2)O/NPC was generated.Upon heat treatment at 850oC,Na_(2)O was further reduced to Na single atoms anchored on NPC,creating Na1/NPC.Experimental studies and theoretical calculations show that Na is structurally embedded on the support in penta-coordinated configuration(Na-C_(3)N_(2)).The synergistic effect of highly dispersed Na atoms and nitrogen doping results in uncommon catalytic activity and stability.In transesterification between methanol and ethylene carbonate to produce dimethyl carbonate(DMC),the yield of DMC reaches 48.4%over Na1/NPC,corresponding to a turnover frequency(TOF)of 129.4 h^(-1),which is far beyond the conventional counterpart Na_(2)O/NPC(63.3 h^(-1))and various reported solid base catalysts.The catalytic activity of Na1/NPC almost keeps constant during five cycles,while 87%of activity is lost for Na_(2)O/NPC due to the leaching of basic sites.This work might offer new ideas for the development of efficient single-atom solid strong base catalysts with high efficiency.展开更多
Low‐temperature selective catalytic reduction(SCR)of NO with NH3 was tested over Ho‐doped Mn–Ce/TiO2 catalysts prepared by the impregnation method.The obtained catalysts with different Ho doping ratios were charact...Low‐temperature selective catalytic reduction(SCR)of NO with NH3 was tested over Ho‐doped Mn–Ce/TiO2 catalysts prepared by the impregnation method.The obtained catalysts with different Ho doping ratios were characterized by Brunauer‐Emmett‐Teller(BET),X‐ray diffraction(XRD),temperature‐programmed reduction(H2‐TPR),temperature‐programmed desorption of NH3(NH3‐TPD),X‐ray photoelectron spectroscopy(XPS),and scanning electron microscopy(SEM).The catalytic activities were tested on a fixed bed.Their results indicated that the proper doping amount of Ho could effectively improve the low‐temperature denitrification performance and the SO2 resistance of Mn–Ce/TiO2 catalyst.The catalyst with Ho/Ti of 0.1 presented excellent catalytic activity,with a conversion of more than 90%in the temperature window of 140–220°C.The characterization results showed that the improved SCR activity of the Mn–Ce/TiO2 catalyst caused by Ho doping was due to the increase of the specific surface area,higher concentration of chemisorbed oxygen,higher surface Mn4+/Mn3+ratio,and higher acidity.The SO2 resistance test showed that the deactivating influence of SO2 on the catalyst was irreversible.The XRD and XPS results showed that the main reason for the catalyst deactivation was sulfates that had formed on the catalyst surface and that Ho doping could inhibit the sulfation to some extent.展开更多
Rational construction of carbon-based materials with high-efficiency bifunctionality and low cost as the substitute of precious metal catalyst shows a highly practical value for rechargeable Zn-air batteries(ZABs)yet ...Rational construction of carbon-based materials with high-efficiency bifunctionality and low cost as the substitute of precious metal catalyst shows a highly practical value for rechargeable Zn-air batteries(ZABs)yet it still remains challenging.Herein,this study employs a simple mixing-calcination strategy to fabricate a high-performance bifunctional composite catalyst composed of N-doped graphitic carbon encapsulating Co nanoparticles(Co@NrC).Benefiting from the core-shell architectural and compositional advantages of favorable electronic configuration,more exposed active sites,sufficient electric conductivity,rich defects,and excellent charge transport,the optimal Co@NrC hybrid(Co@NrC-0.3)presents outstanding catalytic activity and stability toward oxygen-related electrochemical reactions(oxygen reduction and evolution reactions,i.e.,ORR and OER),with a low potential gap of 0.766 V.Besides,the rechargeable liquid ZAB assembled with this hybrid electrocatalyst delivers a high peak power density of 168 mW cm^(−2),a small initial discharge-charge potential gap of 0.45 V at 10 mA cm^(−2),and a good rate performance.Furthermore,a relatively large power density of 108 mW cm^(−2) is also obtained with the Co@NrC-0.3-based flexible solid-state ZAB,which can well power LED lights.Such work offers insights in developing excellent bifunctional electrocatalysts for both OER and ORR and highlights their potential applications in metal-air batteries and other energy-conversion/storage devices.展开更多
Achieving efficient adsorption and desorption processes by controllably tuning the properties of adsorbents at different technical stages is extremely attractive.However,it is difficult for traditional adsorbents to r...Achieving efficient adsorption and desorption processes by controllably tuning the properties of adsorbents at different technical stages is extremely attractive.However,it is difficult for traditional adsorbents to reach the target because of their fixed active sites.Herein,we report on the fabrication of a smart adsorbent,which was achieved by introducing photoresponsive azobenzene derivatives with cis/trans isomers to Ce-doped mesoporous silica.These photoresponsive groups serve as “molecular switches”by sheltering and exposing active sites,leading to efficient adsorption and desorption.Ce is also doped to provide additional active sites in order to enhance the adsorption performance.The results show that the cis isomers effectively shelter the active sites,leading to the selective adsorption of methylene blue(MB)over brilliant blue(BB),while the trans isomers completely expose the active sites,resulting in the convenient release of the adsorbates.Both selective adsorption and efficient desorption can be realized controllably by these smart adsorbents through photostimulation.Moreover,the performance of the obtained materials is well maintained after five cycles.展开更多
Staphylococcus aureus(S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and e...Staphylococcus aureus(S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts(meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.展开更多
Objective:To investigate the percutaneous penetration enhancement effect of essential oil from Zanthoxylum bungeanum Maxim.(Z.bungeanum oil)on active components in externally-applied traditional Chinese medicines.Meth...Objective:To investigate the percutaneous penetration enhancement effect of essential oil from Zanthoxylum bungeanum Maxim.(Z.bungeanum oil)on active components in externally-applied traditional Chinese medicines.Methods:Five model drugs,geniposide,puerarin,ferulic acid,tetramethylpyrazine,and osthole,were chosen based on their lipophilicity and tested using in vitro transdermal permeation studies consisting of Franz diffusion cells and full thickness rat abdominal skin.Scanning electron microscopy was employed to observe the morphological changes of rat skin tissue after treatment with Z.bungeanum oil.The molecular interactions between the oil and the polar head groups in stratum corneum(SC)lipids were monitored using molecular dynamic simulation,and the SC/vehicle partition coefficients and saturation solubilities of the selected model drugs treated with and without the oil were also determined to ascertain its mechanisms of action.Results:As oil concentration increased,the log ERflow trended toward a negative linear relationship with the lipophilicity of drugs.After treatment with Z.bungeanum oil,a mild lifting up and wrinkle on the SC surface were observed,and appeared to become more pronounced as oil concentration increased.There was no significant difference between the control and the Z.bungeanum oil at different concentrations in terms of saturation solubility of GP,while saturation solubilities of the 4 other drugs gradually increased as oil concentration increased.The oxygen-containing constituents in Z.bungeanum oil,such as terpinen-4-ol and 1,8-cineole,which accounted for 57.95%of total oil,could form stable hydrogen bonds with the polar head group of ceramide 3.Conclusion:Z.bungeanum oil facilitated transdermal permeation of drugs with different lipophilicity,including the extremely hydrophilic and lipophilic drugs,whereas it exhibited greater enhancement activity for strongly hydrophilic drugs.The mechanisms of transdermal permeation enhancement by the oil could be explained with SC/vehicle partition coefficient,saturation solubility,and the interactions with SC lipids.展开更多
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo...Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.展开更多
Magnetically responsive porous materials possess unique properties in adsorption processes such as magneticinduced separation and heat generation in alternating magnetic fields, which greatly facilitates recycling pro...Magnetically responsive porous materials possess unique properties in adsorption processes such as magneticinduced separation and heat generation in alternating magnetic fields, which greatly facilitates recycling procedures, favors long-term operation, and improves desorption rate, making conventional adsorption processes highly efficient. With increasing interest in magnetic adsorbents, great progress has been made in designing and understanding of magnetically responsive porous materials varying from monoliths to nanoscale particles used for adsorption including oil uptake, removal of hazardous substances from water, deep desulfurization of fuels, and CO2 capture in the past few years. Therefore, a review summarizing the advanced strategies of synthesizing these magnetically responsive adsorbents and the utilization of their magnetism in practical applications is highly desired. In this review, we give a comprehensive overview of this emerging field, highlighting the strategies of exquisitely incorporating magnetism to porous materials and subtly exploiting their magnetic responsiveness. Further innovations for fabricating or utilizing magnetic adsorbents are expected to be fueled. The potential opportunities and challenges are also discussed.展开更多
基金the support from the National Science and Technology Major Projects of China(Grant No.2016ZX05066)Major Program of National Natural Science Foundation of China(Grant No.51490650)PetroChina Innovation Foundation(No.2018D-5007-0307)
文摘Whether hydraulic fractures could connect multiple gas zones in the vertical plane is the key to fracturing treatment to jointly exploit coalbed methane and tight sandstone gas through integrative hydraulic fracturing in tight sandstone–coal interbedded formations. Laboratory true triaxial hydraulic fracturing experiments were conducted on layered specimens with di erent combination types of natural sandstone and coal to simulate the propagation behavior of hydraulic fractures. The effects of the fracture initiation position, fracturing fluid viscosity and injection rate were discussed. The results showed that di erent fracture morphologies could be found. When initiating from coal seams, three patterns of fracture initiation and propagation were obtained:(1) The main hydraulic fracture initiated and propagated along the natural fractures and then diverged due to the effects of in situ stress and formed secondary fractures.(2) The hydraulic fracture initiated and propagated in the direction of the maximum horizontal stress.(3) Multiple fractures initiated and propagated at the same time. With the same fracturing fluid viscosity and injection rate, the hydraulic fractures initiating in sandstones had greater chances than those in coal seams to penetrate interfaces and enter neighboring layers. Excessively small or large fracturing fluid viscosity and injection rate would do harm to the vertical extension height of the induced fracture and improvement of the stimulated reservoir volume. Compared with operation parameters(fracturing fluid viscosity and injection rate), the natural weak planes in coals were considered to be the key factor that a ected the fracture propagation path. The experimental results would make some contributions to the development of tight sandstone–coal interbedded reservoirs.
基金the financial support of this work by the National Natural Science Foundation of China (21878149, 22078155, and 21808110)the project funded by China Postdoctoral Science Foundation (2020M681567)+1 种基金Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX20_0358)the Natural Science Foundation of Jiangsu Province (BK20180709)
文摘MXenes have attracted increasing research enthusiasm owing to their unique physical and chemical properties.Although MXenes exhibit exciting potential in cations adsorption due to their unique surface groups,the adsorption capacity is limited by the low specific surface area and undeveloped porosity.Our work aims at enhancing the adsorption performance of a well-known MXene,Ti3C2Tx,for methylene blue(MB)by decorating tiny ZIF-8 nanoparticles in the interlayer.After the incorporation of ZIF-8,suitable interspace in the layers resulting from the distribution of tiny ZIF-8 appears.When employing in MB,the adsorption capacity of composites can reach up to 107 mg·g^(-1) while both ZIF-8(3 mg·g^(-1))and Ti_(3)C_(2)Tx(9mg·g^(-1))show nearly no adsorption capacity.The adsorption mechanism was explored,and the good adsorption capacity is caused by the synergistic effect of ZIF-8 and Ti_(3)C_(2)Tx,for neither of them is of suitable interspace or surface groups for MB adsorption.Our work might pave the way for constructing functional materials based on the introduction of nanoparticles into layered materials for various adsorption applications.
基金supported by the Fundamental Research Funds for the Central Universities(WK2090000055)Anhui Provincial Natural Science Foundation of China(2308085QG231).
文摘As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation and fragmentation.This ultimately leads to a decrease in cell capacity.The trends of volume expansion and capacity change of the SiO/graphite(SiO/C)composite electrode during cycling were investigated via in situ expansion monitoring.First,a series of expansion test schemes were designed,and the linear relationship between negative electrode expansion and cell capacity degradation was quantitatively analyzed.Then,the effects of different initial pressures on the long-term cycling performance of the cell were evaluated.Finally,the mechanism of their effects was analyzed by scanning electron microscope.The results show that after 50 cycles,the cell capacity decreases from 2.556 mAh to 1.689 mAh,with a capacity retention ratio(CRR)of only 66.08%.A linear relationship between the capacity retention ratio and thickness expansion was found.Electrochemical measurements and scanning electron microscope images demonstrate that intense stress inhibits the lithiation of the negative electrode and that the electrode is more susceptible to irreversible damage during cycling.Overall,these results reveal the relationship between the cycling performance of SiO and the internal pressure of the electrode from a macroscopic point of view,which provides some reference for the application of SiO/C composite electrodes in lithium-ion batteries.
基金supported by the National Natural Science Foundation of China(52376080 and 52306122)the Anhui Provincial Natural Science Foundation(2308085QE174)+3 种基金the China Postdoctoral Science Foundation(2023TQ0346)the Postdoctoral Fellowship Program of CPSF(GZC20232522)the Fundamental Research Funds for the Central Universities(WK2090000057)the Students’Innovation and Entrepreneurship Foundation of USTC(CY2023C008).
文摘Lithium-oxygen batteries attract considerable attention due to exceptionally high theoretical energy density,while the development remains in its early stage.As is widely suggested,the solution mechanism induces greater discharge capacity,while the surface mechanism induces greater cycle stability.Therefore,battery performance can be improved by adjusting the reaction mechanism.Previous studies predominantly focus on extremely thin or flat electrodes.In contrast,this work utilizes thick electrodes,emphasizing the importance of mass transport.Given that the electrolyte solvent is the main site of mass transport,the effects of two typical solvents on mass transport and battery performance are investigated:dimethyl sulfoxide with low viscosity and a high O_(2) diffusion rate and tetraethylene glycol dimethyl ether with high O_(2) solubility and high Li+transport capability.The results reveal a novel pathway for reaction mechanism induction where the mechanism varies with the spatial position of the electrode.As the spatial distribution of the electrode progresses,a layered appearance of solution mechanism products,transition state products,and surface mechanism products emerges,which is attributed to the increase in the mass transfer resistance.This work presents a distinct perspective on the way solvents influence reaction pathways and offers a new approach to regulating reaction pathways.
基金the Science Foundation of China University of Petroleum,Beijing(Grant No.2462024YJRC021)the National Natural Science Foundation of China(Grant No.U24B2031 and 52104013).
文摘1.Introduction With the increasing demand for petroleum and natural gas resources,along with technological advancements in exploration and production,the primary frontier of oil and gas resources has shifted from conventional oil and gas development to the domains of“Two Deeps,One Unconventional,One Mature,”which include deep onshore,deepwater,unconventional resources,and mature oilfields[1].
基金support of the National Natural Science Foundation of China(Grant No.52371279)the Program for International Exchange and Cooperation in Education by the Ministry of Education of the People's Republic of China(Grant No.57220500123).
文摘Lost circulation of drilling fluid is one of the most common and costly problems in drilling operations.This highlights the importance of wellbore strengthening treatment sthat can utilize lost circulation materials(LCMs)to seal fractures associated with the wellbore.In this work,a numerical model accounting for the deformation of surrounding rock,fluid flow in the fracture,fracture propagation,and the transport of LCMs is presented to investigate the wellbore strengthening,from the fracture initiation to the fracture arrest,due to plugs formed by LCMs.The equations governing the rock deformation and fluid flow are solved by the dual boundary element method and the finite volume method,respectively.The transport of LCMs is solved based on an empirical constitutive model in suspension flow,and several characteristic quantities are derived by dimensional analysis.It is found that two dimensionless parameters,dimensionless toughness and normalized initial particle concentration,control the migration of LCM particles.The numerical results show that the dimensionless toughness influences the entrance and bridging of LCMs while the initial concentration controls the location of the particle bridging.When the initial concentration is larger than 0.8,the particle bridging tends to occur near the fracture entry.Conversely,when the initial concentration is less than 0.8,the particle bridging occurs near the fracture tip.This work provides an effective tool to predict the LCM transport and plugging in the wellbore strengthening process.
基金supported by the Natural Science Foundation of Beijing City(No.J230034)the Fundamental Research Funds for the Central Universities(No.2023-JYB-JBQN-051)the Talent Cultivation Project of Beijing University of Chinese Medicine(No.JZPY202206).
文摘Gastric cancer(GC)is characterized by high morbidity and mortality rates.Chinese agarwood comprises the resin-containing wood of Aquilaria sinensis(Lour.)Gilg.,traditionally utilized for treating asthma,cardiac ischemia,and tumors.However,comprehensive research regarding its anti-GC effects and underlying mechanisms remains limited.In this study,Chinese agarwood petroleum ether extract(CAPEE)demonstrated potent cytotoxicity against human GC cells,with half maximal inhibitory concentration(IC_(50))values for AGS,HGC27,and MGC803 cells of 2.89,2.46,and 2.37μg·mL^(−1),respectively,at 48 h.CAPEE significantly induced apoptosis in these GC cells,with B-cell lymphoma-2(BCL-2)associated X protein(BAX)/BCL-2 antagonist killer 1(BAK)likely mediating CAPEE-induced apoptosis.Furthermore,CAPEE induced G_(0)/G_(1)phase cell cycle arrest in human GC cells via activation of the deoxyribonucleic acid(DNA)damage-p21-cyclin D1/cyclin-dependent kinase 4(CDK4)signaling axis,and increased Fe^(2+),lipid peroxides and reactive oxygen species(ROS)levels,thereby inducing ferroptosis.Ribonucleic acid(RNA)sequencing,real-time quantitative polymerase chain reaction(RT-qPCR),and Western blotting analyses revealed CAPEE-mediated upregulation of heme oxygenase-1(HO-1)in human GC cells.RNA interference studies demonstrated that HO-1 knockdown reduced CAPEE sensitivity and inhibited CAPEE-induced ferroptosis in human GC cells.Additionally,CAPEE administration exhibited robust in vivo anti-GC activity without significant toxicity in nude mice while inhibiting tumor cell growth and promoting apoptosis in tumor tissues.These findings indicate that CAPEE suppresses human GC cell growth through upregulation of the DNA damage-p21-cyclin D1/CDK4 signaling axis and HO-1-mediated ferroptosis,suggesting its potential as a candidate drug for GC treatment.
基金financially supported by the National Natural Science Foundation of China(Nos.12004085 and 12074092)the Fundamental Research Funds for the Central Universities(No.2023FRFK06004)+2 种基金the Natural Science Foundation of Heilongjiang Province of China(Nos.YQ2022A010 and ZD2022E003)the fellow-ship of China National Postdoctoral Program for Innovative Talents(No.BX20200111)the Heilongjiang Postdoctoral Funds(Nos.LBH-Z20065 and LBH-Z22121).
文摘Perovskite ferroelectrics play an essential role in modern science and technology.The excellent properties of perovskites are closely related to their lattice dynamics.Potassium tantalate niobate(KTa_(1-x)Nb_(x)O_(3),abbreviated as KTN)is a typical solid-solution perovskite with superior properties.Although the optical and electrical performances of KTN crystals have been widely explored,information on their lattice dynamics is still scarce,which partially limits the research and performance optimization of KTN.As a solid-solution,spontaneous polarization of KTN exhibits strong tunability,and there is stress within KTN.Here,we performed first-principles calculations in conjunction with experiments to investigate the polarization-and stress-related lattice dynamics in KTN.We assigned the vibration modes of observed Raman peaks,and established the relationship between spontaneous polarization and vibration.Especially,the lattice dynamics evolution of KTN crystal under stress was investigated.And the results provide insights into the regulatory effect of stress on dielectric property from the perspective of lattice dynamics.Finally,the variation trends of phonons under stress,as well as the mechanism of stress effect in tetragonal perovskites were explained.The conclusions drawn for KTN crystal were generalized to tetragonal ferroelectric systems.Our results help to reflect spontaneous polarization and structural characteristics distribution through non-destructive Raman spectra,and give a reference for improving performance by regulating lattice dynamics.The findings will hopefully guide research on performance origin and refined design of perovskite functional materials.
基金the National Natural Science Foundation of China(11802106,11932005,U20A20251,52102226,and 22109101)Department of Education of Guangdong Province,China(2021KCXTD006 and 2021KQNCX272)+1 种基金Science,Technology and Innovation Commission of Shenzhen Municipality,China(GJHZ20220913143009017 and JCYJ20210324093008021)Development and Reform Commission of Shenzhen Municipality,China(XMHT20220103004)is appreciated.
文摘Solid oxide fuel cell(SOFC)is a promising power generation technology with high efficiency and can operate with a wide range of fuels.Although H2 delivery and storage are still hurdles,natural gas is readily accessible through existing pipeline infrastructure and therefore stands as a viable fuel candidate for SOFC.Owing to the high operating temperature,the methane in natural gas can be directly reformed in the anode of an SOFC.However,mechanical failure remains a critical issue and hinders the prevalence of traditional planar SOFCs.A novel flat-tubular structure with symmetrical double-sided cathodes was previously proposed to improve mechanical durability.In this work,the performance of a methane-fueled SOFC with symmetrical double-sided cathodes is analyzed with a numerical multiphysics model.The distributions of different physical fields in the SOFC are investigated.Special attention is paid to stress analysis,which is closely related to the mechanical stability of an SOFC.Furthermore,the CH_(4)-fueled and H_(2)-fueled SOFCs are also compared in terms of the distribution of thermal stress.A lower first principal stress is observed for CH_(4)-fueled flat-tubular SOFC,demonstrating a reduced probability of mechanical failures and potentially extended lifespan.
基金supported by the National Science Foundation of China(22125804 and U24A20534)。
文摘Solid strong base catalysts have high potentials in a variety of reactions due to the advantages of negligible corrosion,easy separation,and high efficiency.However,two issues hinder the applications of such catalysts seriously,namely aggregation of basic sites and leaching of active species during reactions.The development of solid strong base catalysts with active sites that are highly dispersed and stable remains a pronounced challenge.In this work,we employed a two-step reduction strategy to anchor Na single atoms on nitrogen-doped porous carbon(NPC)support,producing a high-performance solid strongly basic catalyst named as Na1/NPC.The alkali precursor NaNO3was converted to Na_(2)O on NPC at 400℃,in which conventional solid base catalyst Na_(2)O/NPC was generated.Upon heat treatment at 850oC,Na_(2)O was further reduced to Na single atoms anchored on NPC,creating Na1/NPC.Experimental studies and theoretical calculations show that Na is structurally embedded on the support in penta-coordinated configuration(Na-C_(3)N_(2)).The synergistic effect of highly dispersed Na atoms and nitrogen doping results in uncommon catalytic activity and stability.In transesterification between methanol and ethylene carbonate to produce dimethyl carbonate(DMC),the yield of DMC reaches 48.4%over Na1/NPC,corresponding to a turnover frequency(TOF)of 129.4 h^(-1),which is far beyond the conventional counterpart Na_(2)O/NPC(63.3 h^(-1))and various reported solid base catalysts.The catalytic activity of Na1/NPC almost keeps constant during five cycles,while 87%of activity is lost for Na_(2)O/NPC due to the leaching of basic sites.This work might offer new ideas for the development of efficient single-atom solid strong base catalysts with high efficiency.
文摘Low‐temperature selective catalytic reduction(SCR)of NO with NH3 was tested over Ho‐doped Mn–Ce/TiO2 catalysts prepared by the impregnation method.The obtained catalysts with different Ho doping ratios were characterized by Brunauer‐Emmett‐Teller(BET),X‐ray diffraction(XRD),temperature‐programmed reduction(H2‐TPR),temperature‐programmed desorption of NH3(NH3‐TPD),X‐ray photoelectron spectroscopy(XPS),and scanning electron microscopy(SEM).The catalytic activities were tested on a fixed bed.Their results indicated that the proper doping amount of Ho could effectively improve the low‐temperature denitrification performance and the SO2 resistance of Mn–Ce/TiO2 catalyst.The catalyst with Ho/Ti of 0.1 presented excellent catalytic activity,with a conversion of more than 90%in the temperature window of 140–220°C.The characterization results showed that the improved SCR activity of the Mn–Ce/TiO2 catalyst caused by Ho doping was due to the increase of the specific surface area,higher concentration of chemisorbed oxygen,higher surface Mn4+/Mn3+ratio,and higher acidity.The SO2 resistance test showed that the deactivating influence of SO2 on the catalyst was irreversible.The XRD and XPS results showed that the main reason for the catalyst deactivation was sulfates that had formed on the catalyst surface and that Ho doping could inhibit the sulfation to some extent.
基金the Theme-based Scheme(project number:T23-601/17-R)from Research Grant Council,University Grants Committee,Hong Kong SAR,China.
文摘Rational construction of carbon-based materials with high-efficiency bifunctionality and low cost as the substitute of precious metal catalyst shows a highly practical value for rechargeable Zn-air batteries(ZABs)yet it still remains challenging.Herein,this study employs a simple mixing-calcination strategy to fabricate a high-performance bifunctional composite catalyst composed of N-doped graphitic carbon encapsulating Co nanoparticles(Co@NrC).Benefiting from the core-shell architectural and compositional advantages of favorable electronic configuration,more exposed active sites,sufficient electric conductivity,rich defects,and excellent charge transport,the optimal Co@NrC hybrid(Co@NrC-0.3)presents outstanding catalytic activity and stability toward oxygen-related electrochemical reactions(oxygen reduction and evolution reactions,i.e.,ORR and OER),with a low potential gap of 0.766 V.Besides,the rechargeable liquid ZAB assembled with this hybrid electrocatalyst delivers a high peak power density of 168 mW cm^(−2),a small initial discharge-charge potential gap of 0.45 V at 10 mA cm^(−2),and a good rate performance.Furthermore,a relatively large power density of 108 mW cm^(−2) is also obtained with the Co@NrC-0.3-based flexible solid-state ZAB,which can well power LED lights.Such work offers insights in developing excellent bifunctional electrocatalysts for both OER and ORR and highlights their potential applications in metal-air batteries and other energy-conversion/storage devices.
基金This work was supported by the National Science Fund for Excellent Young Scholars(21722606)the National Natural Science Foundation of China(21676138,21878149,21808110,and 21576137)+1 种基金the China Postdoctoral Science Foundation(2018M632295)the Six Talent Plan(2016XCL031).
文摘Achieving efficient adsorption and desorption processes by controllably tuning the properties of adsorbents at different technical stages is extremely attractive.However,it is difficult for traditional adsorbents to reach the target because of their fixed active sites.Herein,we report on the fabrication of a smart adsorbent,which was achieved by introducing photoresponsive azobenzene derivatives with cis/trans isomers to Ce-doped mesoporous silica.These photoresponsive groups serve as “molecular switches”by sheltering and exposing active sites,leading to efficient adsorption and desorption.Ce is also doped to provide additional active sites in order to enhance the adsorption performance.The results show that the cis isomers effectively shelter the active sites,leading to the selective adsorption of methylene blue(MB)over brilliant blue(BB),while the trans isomers completely expose the active sites,resulting in the convenient release of the adsorbates.Both selective adsorption and efficient desorption can be realized controllably by these smart adsorbents through photostimulation.Moreover,the performance of the obtained materials is well maintained after five cycles.
基金supported by the National Natural Science Foundation of China (31930106 and U22A20514, U23A20232)the National Key R&D Program of China (2022YFD1300404)+2 种基金the 2115 Talent Development Program of China Agricultural University (1041-00109019)the Pinduoduo-China Agricultural University Research Fund (PC2023A01001)the Special Fund for Henan Agriculture Research System (HARS-2213-Z1)。
文摘Staphylococcus aureus(S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts(meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.
基金National Natural Science Foundation of China(No.81473365)Postgraduate Project of Beijing University of Chinese Medicine(No.2016-JYB-XS095)The authors also thank the Innovative Research Team of Beijing University of Chinese Medicine(No.2011-CXTD-13)for its financial support.
文摘Objective:To investigate the percutaneous penetration enhancement effect of essential oil from Zanthoxylum bungeanum Maxim.(Z.bungeanum oil)on active components in externally-applied traditional Chinese medicines.Methods:Five model drugs,geniposide,puerarin,ferulic acid,tetramethylpyrazine,and osthole,were chosen based on their lipophilicity and tested using in vitro transdermal permeation studies consisting of Franz diffusion cells and full thickness rat abdominal skin.Scanning electron microscopy was employed to observe the morphological changes of rat skin tissue after treatment with Z.bungeanum oil.The molecular interactions between the oil and the polar head groups in stratum corneum(SC)lipids were monitored using molecular dynamic simulation,and the SC/vehicle partition coefficients and saturation solubilities of the selected model drugs treated with and without the oil were also determined to ascertain its mechanisms of action.Results:As oil concentration increased,the log ERflow trended toward a negative linear relationship with the lipophilicity of drugs.After treatment with Z.bungeanum oil,a mild lifting up and wrinkle on the SC surface were observed,and appeared to become more pronounced as oil concentration increased.There was no significant difference between the control and the Z.bungeanum oil at different concentrations in terms of saturation solubility of GP,while saturation solubilities of the 4 other drugs gradually increased as oil concentration increased.The oxygen-containing constituents in Z.bungeanum oil,such as terpinen-4-ol and 1,8-cineole,which accounted for 57.95%of total oil,could form stable hydrogen bonds with the polar head group of ceramide 3.Conclusion:Z.bungeanum oil facilitated transdermal permeation of drugs with different lipophilicity,including the extremely hydrophilic and lipophilic drugs,whereas it exhibited greater enhancement activity for strongly hydrophilic drugs.The mechanisms of transdermal permeation enhancement by the oil could be explained with SC/vehicle partition coefficient,saturation solubility,and the interactions with SC lipids.
基金supported by the National Science Fund for Distinguished Young Scholars(22125804)the National Natural Science Foundation of China(21808110,22078155,and 21878149).
文摘Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.
基金Supported by the National Natural Science Foundation of China(21722606,21676138,and 21576137)China Postdoctoral Science Foundation(2018M632295)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Magnetically responsive porous materials possess unique properties in adsorption processes such as magneticinduced separation and heat generation in alternating magnetic fields, which greatly facilitates recycling procedures, favors long-term operation, and improves desorption rate, making conventional adsorption processes highly efficient. With increasing interest in magnetic adsorbents, great progress has been made in designing and understanding of magnetically responsive porous materials varying from monoliths to nanoscale particles used for adsorption including oil uptake, removal of hazardous substances from water, deep desulfurization of fuels, and CO2 capture in the past few years. Therefore, a review summarizing the advanced strategies of synthesizing these magnetically responsive adsorbents and the utilization of their magnetism in practical applications is highly desired. In this review, we give a comprehensive overview of this emerging field, highlighting the strategies of exquisitely incorporating magnetism to porous materials and subtly exploiting their magnetic responsiveness. Further innovations for fabricating or utilizing magnetic adsorbents are expected to be fueled. The potential opportunities and challenges are also discussed.