Multi-charged helium ion beam He2+ is useful for helium accelerator to obtain a higher energy with lower cost and for deuterium accelerator to avoid neutron activation during machine commissioning. An attempt to gene...Multi-charged helium ion beam He2+ is useful for helium accelerator to obtain a higher energy with lower cost and for deuterium accelerator to avoid neutron activation during machine commissioning. An attempt to generate milliampere multi-charged helium He2+ ion beam with a 2.45 GHz electron cyclotron resonance ion source (ECRIS) was tested recently. A design using a specfic permanent magnet 2.45 GHz ECRIS (PMECRIS) source (ERCIS) is reported and the He2~ beam production ability is described. With this source, we produced a total helium beam of 40 mA at 40 kV with 180 W of net microwave power and a gas flow of less than 0.5 seem. At steady state the He2+ beam intensity is 4.4 rnA, that being the fraction of multi-charged he- lium ion beam is at approximately 11%.展开更多
Three sets of High Intensity Beam Emittance Measurement Units (HIBEMUs) are being developed at Peking University. They are HIBEMU-2 (slit-wire type, one direction), HIBEMU-3 (Allison scanner type, one direction) and H...Three sets of High Intensity Beam Emittance Measurement Units (HIBEMUs) are being developed at Peking University. They are HIBEMU-2 (slit-wire type, one direction), HIBEMU-3 (Allison scanner type, one direction) and HIBEMU-4 (slit-wire type, two directions). For HIBEMU-2 and HIBEMU-3, more recent work has been done on software redesign in order to measure beam emittance and to draw phase diagram more efficiently and precisely. Software for control and data processing of them were developed in Labveiw environment, trying to improve calculation rationality and to offer user-friendly interface. Mechanical modification was also done for HIBEMU-3, mainly concentrating on the protection of Faraday cups from being overheated by the high intensity beam and also from interference of secondary electrons. This paper will also cover the mechanical structure as well as the software development of HIBEMU-4, which is a two-direction emittance scanner newly designed and manufactured for the high energy beam transport (HEBT) of Peking University Neutron Imaging FaciliTY (PKUNIFTY). At the end of this paper, comparison and analysis of the three HIBEMUs are given to draw forth better design of the future emittance measurement facility.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11075008 and 11175009)
文摘Multi-charged helium ion beam He2+ is useful for helium accelerator to obtain a higher energy with lower cost and for deuterium accelerator to avoid neutron activation during machine commissioning. An attempt to generate milliampere multi-charged helium He2+ ion beam with a 2.45 GHz electron cyclotron resonance ion source (ECRIS) was tested recently. A design using a specfic permanent magnet 2.45 GHz ECRIS (PMECRIS) source (ERCIS) is reported and the He2~ beam production ability is described. With this source, we produced a total helium beam of 40 mA at 40 kV with 180 W of net microwave power and a gas flow of less than 0.5 seem. At steady state the He2+ beam intensity is 4.4 rnA, that being the fraction of multi-charged he- lium ion beam is at approximately 11%.
基金supported by the National Natural Science Foudation of China (Grant No. 11075008)
文摘Three sets of High Intensity Beam Emittance Measurement Units (HIBEMUs) are being developed at Peking University. They are HIBEMU-2 (slit-wire type, one direction), HIBEMU-3 (Allison scanner type, one direction) and HIBEMU-4 (slit-wire type, two directions). For HIBEMU-2 and HIBEMU-3, more recent work has been done on software redesign in order to measure beam emittance and to draw phase diagram more efficiently and precisely. Software for control and data processing of them were developed in Labveiw environment, trying to improve calculation rationality and to offer user-friendly interface. Mechanical modification was also done for HIBEMU-3, mainly concentrating on the protection of Faraday cups from being overheated by the high intensity beam and also from interference of secondary electrons. This paper will also cover the mechanical structure as well as the software development of HIBEMU-4, which is a two-direction emittance scanner newly designed and manufactured for the high energy beam transport (HEBT) of Peking University Neutron Imaging FaciliTY (PKUNIFTY). At the end of this paper, comparison and analysis of the three HIBEMUs are given to draw forth better design of the future emittance measurement facility.