期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于不确定性分布的金融风险审慎管理研究 被引量:20
1
作者 宫晓琳 彭实戈 +2 位作者 杨淑振 孙怡青 杭晓渝 《经济研究》 CSSCI 北大核心 2019年第7期64-77,共14页
本文旨在研究如何在金融风险测度中对关键性隐患——不确定性进行适度的量化分析以有效增强风险管理的审慎性。首先直观呈现“不确定性”的概率统计表现,分析其引致风险或危机事件的必然性与严重性。进而,以广泛使用的风险管理方法VaR... 本文旨在研究如何在金融风险测度中对关键性隐患——不确定性进行适度的量化分析以有效增强风险管理的审慎性。首先直观呈现“不确定性”的概率统计表现,分析其引致风险或危机事件的必然性与严重性。进而,以广泛使用的风险管理方法VaR与ES为例全面回顾与分析相应领域的技术发展历程,揭示解决不确定性问题的重要性。由此,基于概率统计领域的国际前沿突破与相应参数估计方法的创新发展,系统性提出兼容无穷可能不确定性分布的风险审慎管理模型GE-VaR与GE-ES,进一步地,通过与公认最有效的风险测度方法相比较,证实纳入概率分布不确定性的风险管理模型的敏锐性与审慎性,以及对中国现阶段高波动率、相对高风险、高不确定性市场特征的适用性。 展开更多
关键词 不确定性 风险管理 非线性期望理论 VAR ES
原文传递
非线性期望的理论、方法及意义 被引量:22
2
作者 彭实戈 《中国科学:数学》 CSCD 北大核心 2017年第10期1223-1254,共32页
本文是非线性期望理论进展的一个综述,首先给出非线性期望空间的基本定义,并通过非线性期望的表示定理和几个典型的非线性独立同分布(i.i.d.)的例子来说明为什么这个新框架可以广泛地用来分析和计算现实世界(高维)数据背后隐藏的概率和... 本文是非线性期望理论进展的一个综述,首先给出非线性期望空间的基本定义,并通过非线性期望的表示定理和几个典型的非线性独立同分布(i.i.d.)的例子来说明为什么这个新框架可以广泛地用来分析和计算现实世界(高维)数据背后隐藏的概率和统计分布的不确定性;进而介绍次线性期望空间中两个最重要的统计分布—非线性正态分布和最大分布,以及相应的非线性大数定律和中心极限定理,是新领域的基础性和关键性的突破,其典型的应用就是对于现实的(高维)样本数据的非常简单而深刻的φ-max-mean算法.本文还介绍一个最重要的连续时间随机过程——非线性Brown运动及相关随机分析,包括随机积分、随机微分方程和非线性鞅理论.新的理论框架实质性地推广了Kolmogorov于1933年建立的、以概率测度为核心的概率论公理体系(?,F,P).其关键不同的是,其核心概念是(非线性)期望ê,期望为线性的特殊情形对应着概率论公理体系.正是这种非线性使人们能够对于现实世界中无处不在的概率模型本身的不确定性也能进行定量的分析和计算.从而实质性地放宽了概率统计理论中对于现实世界的随机数据的统计假设要求,本文也因而获得了实际样本数据的非线性分布的φ-max-mean算法,它是一种新的非线性Monté-Carlo算法. 展开更多
关键词 非线性数学期望 非线性正态分布 非线性独立同分布 非线性大数定理和中心极限定理 非线性Brown运动及其随机分析 非线性鞅 非线性Monté-Carlo算法 φ-max-mean算法
原文传递
NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS 被引量:32
3
作者 peng shige 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2005年第2期159-184,共26页
This paper deals with nonlinear expectations. The author obtains a nonlinear gen- eralization of the well-known Kolmogorov’s consistent theorem and then use it to con- struct ?ltration-consistent nonlinear expectatio... This paper deals with nonlinear expectations. The author obtains a nonlinear gen- eralization of the well-known Kolmogorov’s consistent theorem and then use it to con- struct ?ltration-consistent nonlinear expectations via nonlinear Markov chains. Com- pared to the author’s previous results, i.e., the theory of g-expectations introduced via BSDE on a probability space, the present framework is not based on a given probabil- ity measure. Many fully nonlinear and singular situations are covered. The induced topology is a natural generalization of Lp-norms and L∞-norm in linear situations. The author also obtains the existence and uniqueness result of BSDE under this new framework and develops a nonlinear type of von Neumann-Morgenstern representation theorem to utilities and present dynamic risk measures. 展开更多
关键词 Backward stochastic differential equations Nonlinear expectation Non-linear expected utilities Measure of risk G-EXPECTATION Nonlinear Mar-kov chain g-martingale Nonlinear martingale Nonlinear Kolmogorov’s consistent theorem Doob-Meyer decomposition
原文传递
BSDE,path-dependent PDE and nonlinear Feynman-Kac formula 被引量:9
4
作者 peng shige WANG FaLei 《Science China Mathematics》 SCIE CSCD 2016年第1期19-36,共18页
We introduce a new type of path-dependent quasi-linear parabolic PDEs in which the continuous paths on an interval [0, t] become the basic variables in the place of classical variables (t, x) ∈[0, T]× R^d. Thi... We introduce a new type of path-dependent quasi-linear parabolic PDEs in which the continuous paths on an interval [0, t] become the basic variables in the place of classical variables (t, x) ∈[0, T]× R^d. This new type of PDEs are formulated through a classical BSDE in which the terminal values and the generators are allowed to be general function of Brownian motion paths. In this way, we establish the nonlinear Feynman- Kac formula for a general non-Markoviau BSDE. Some main properties of solutions of this new PDEs are also obtained. 展开更多
关键词 backward stochastic differential equation nonlinear Feynman-Kac formula path-dependent PDE
原文传递
Stochastic calculus with respect to G-Brownian motion viewed through rough paths 被引量:2
5
作者 peng shige ZHANG HuiLin 《Science China Mathematics》 SCIE CSCD 2017年第1期1-20,共20页
We study rough path properties of stochastic integrals of Ito's type and Stratonovich's type with respect to G-Brownian motion. The roughness of G-Brownian motion is estimated and then the pathwise Norris lemm... We study rough path properties of stochastic integrals of Ito's type and Stratonovich's type with respect to G-Brownian motion. The roughness of G-Brownian motion is estimated and then the pathwise Norris lemma in G-framework is obtained. 展开更多
关键词 rough paths roughness of G-Brownian motion Norris lemma
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部