Psathyrostachys huashanica Keng ex P.C.Kuo(2n=2x=14,NsNs),a wild relative of wheat,represents a valuable germplasm resource for genetic improvement of wheat.We previously confirmed that a chromosome 7Ns from P.huashan...Psathyrostachys huashanica Keng ex P.C.Kuo(2n=2x=14,NsNs),a wild relative of wheat,represents a valuable germplasm resource for genetic improvement of wheat.We previously confirmed that a chromosome 7Ns from P.huashanica carries genes that accelerate heading and maturity in wheat.Here,we developed three small segment translocation lines(T7NsS-2BL 2BS,T7NsS-1AS 1AL#1,and T7NsS-1AS 1AL#2)along with one additional small segment translocation line(T7NsS-7BS 7BL)through^(60)Co-γ irradiation,identified using genomic in situ hybridization(GISH),fluorescence in situ hybridization(FISH),and liquid chip array analyses.Our findings demonstrated that chromosome 7NsS contained a major early heading date gene,tentatively designated Ehd-7Ns,which was mapped to an approximate31.45 Mb region,corresponding to the short arm of wheat chromosome 7A(IWGSC RefSeq v1.0).The T7NsS-1AS 1AL#2 line exhibited no significant yield penalty and possessed superior agronomic traits relative to the other translocation lines in the field,making it a promising pre-breeding donor for breeding early maturing wheat.Furthermore,21 specific Kompetitive Allele Specific PCR(KASP)markers were developed based on transcriptome data,enabling effective tracing of alien chromosomal segments carrying this source of Ehd-7Ns in marker-assisted breeding.Collectively,these newly developed translocation lines and specific KASP markers will facilitate the transfer and utilization of favorable genes from P.huashanica chromosome 7Ns in future wheat breeding programs.展开更多
Rice(Oryza sativa L.),a thermophilic crop,is highly sensitive to cold stress,particularly during the seedling stage.Developing cold-tolerant rice varieties is a possible strategy to mitigate yield losses caused by low...Rice(Oryza sativa L.),a thermophilic crop,is highly sensitive to cold stress,particularly during the seedling stage.Developing cold-tolerant rice varieties is a possible strategy to mitigate yield losses caused by low temperatures.However,few genes for cold tolerance have been identified.In this study,we identified OsALA4(Aminophospholipid ATPase 4),encoding a plasma membrane-localized P4-ATPase,from a chromosomal segment substitution line(CSSL-K2832-2)harboring cold-tolerance QTL qLTS5(Low Temperature Sensitive 5).Genetic and subcellular localization analyses revealed that OsALA4 regulates cold tolerance by maintaining plasma membrane fluidity and cellular homeostasis.Physiological assessments showed that OsALA4 reduces malondialdehyde(MDA),electrolyte leakage,reactive oxygen species(ROS),and cell death under cold stress.Promoter activity assays indicated that stronger OsALA4 expression in Nipponbare(OsALA4Nip)correlated with enhanced cold tolerance.Further experiments demonstrated that SNP sites within the promoter regions(-1500 bp to-700 bp)of OsALA4Nipand OsALA49311influenced their activity.This study highlights Os ALA4 as a valuable genetic target for breeding cold tolerant rice.展开更多
Tin oxide has emerged as a promising electron transport material in perovskite solar cells due to its high conductivity and photostability.However,the inherent defects in SnO_(2)nanoparticles and their imperfect bondi...Tin oxide has emerged as a promising electron transport material in perovskite solar cells due to its high conductivity and photostability.However,the inherent defects in SnO_(2)nanoparticles and their imperfect bonding with perovskite at the interface lead to additional energy loss.To achieve bifacial passivation on the SnO_(2)electron transport layer and the SnO_(2)/perovskite interface synchronously,a multifunctional surface modulation strategy has been developed by incorporating O-phospho-L-serine monolithium salt(PSLi)to regulate the SnO_(2)nanoparticles.PS-Li coordinates with SnO_(2)through the phosphate/carboxyl groups,with the exposed amino group passivating the uncoordinated lead ions at the interface.The introduction of a lithium ion further regulates the energy band of SnO_(2),accelerating electron extraction and transport.This multifunctional modulation strategy reduces trap states from tin dangling bonds and oxygen vacancies,enhancing film conductivity.It also regulates the growth of the perovskite crystal and reduces nonradiative recombination at the interface.Consequently,the optimized perovskite solar cells achieve power conversion efficiencies(PCEs)of 24.91% for small-area devices and 23.14% for minimodules(aperture area of 30 cm^(2)).The unencapsulated device retains 91% and 89% of its initial PCE after enduring 1000 h under ambient conditions,and 500 h under 1 sun illumination in N2atmosphere,respectively.展开更多
基金funded by the National Key Research and Development Program of China(2024YFD1201202)the Major Program of National Agricultural Science and Technology of China(NK20220607)+1 种基金the Science and Technology Bureau of Sichuan Province(2023NSFSC1995,2024NSFSC1968,and 2025YFHZ0184)the Science and Technology Bureau of Chengdu City(2024-YF05-00368-SN)。
文摘Psathyrostachys huashanica Keng ex P.C.Kuo(2n=2x=14,NsNs),a wild relative of wheat,represents a valuable germplasm resource for genetic improvement of wheat.We previously confirmed that a chromosome 7Ns from P.huashanica carries genes that accelerate heading and maturity in wheat.Here,we developed three small segment translocation lines(T7NsS-2BL 2BS,T7NsS-1AS 1AL#1,and T7NsS-1AS 1AL#2)along with one additional small segment translocation line(T7NsS-7BS 7BL)through^(60)Co-γ irradiation,identified using genomic in situ hybridization(GISH),fluorescence in situ hybridization(FISH),and liquid chip array analyses.Our findings demonstrated that chromosome 7NsS contained a major early heading date gene,tentatively designated Ehd-7Ns,which was mapped to an approximate31.45 Mb region,corresponding to the short arm of wheat chromosome 7A(IWGSC RefSeq v1.0).The T7NsS-1AS 1AL#2 line exhibited no significant yield penalty and possessed superior agronomic traits relative to the other translocation lines in the field,making it a promising pre-breeding donor for breeding early maturing wheat.Furthermore,21 specific Kompetitive Allele Specific PCR(KASP)markers were developed based on transcriptome data,enabling effective tracing of alien chromosomal segments carrying this source of Ehd-7Ns in marker-assisted breeding.Collectively,these newly developed translocation lines and specific KASP markers will facilitate the transfer and utilization of favorable genes from P.huashanica chromosome 7Ns in future wheat breeding programs.
基金supported by grants from the National Natural Science Foundation of China(32121003,32325038)Key Research and Development Projects of Sichuan(2021YFYZ0016)Open Project Program(SKL-ZD202207)of State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China。
文摘Rice(Oryza sativa L.),a thermophilic crop,is highly sensitive to cold stress,particularly during the seedling stage.Developing cold-tolerant rice varieties is a possible strategy to mitigate yield losses caused by low temperatures.However,few genes for cold tolerance have been identified.In this study,we identified OsALA4(Aminophospholipid ATPase 4),encoding a plasma membrane-localized P4-ATPase,from a chromosomal segment substitution line(CSSL-K2832-2)harboring cold-tolerance QTL qLTS5(Low Temperature Sensitive 5).Genetic and subcellular localization analyses revealed that OsALA4 regulates cold tolerance by maintaining plasma membrane fluidity and cellular homeostasis.Physiological assessments showed that OsALA4 reduces malondialdehyde(MDA),electrolyte leakage,reactive oxygen species(ROS),and cell death under cold stress.Promoter activity assays indicated that stronger OsALA4 expression in Nipponbare(OsALA4Nip)correlated with enhanced cold tolerance.Further experiments demonstrated that SNP sites within the promoter regions(-1500 bp to-700 bp)of OsALA4Nipand OsALA49311influenced their activity.This study highlights Os ALA4 as a valuable genetic target for breeding cold tolerant rice.
基金financially supported by the Science Foundation of the Chinese Academy of Sciences。
文摘Tin oxide has emerged as a promising electron transport material in perovskite solar cells due to its high conductivity and photostability.However,the inherent defects in SnO_(2)nanoparticles and their imperfect bonding with perovskite at the interface lead to additional energy loss.To achieve bifacial passivation on the SnO_(2)electron transport layer and the SnO_(2)/perovskite interface synchronously,a multifunctional surface modulation strategy has been developed by incorporating O-phospho-L-serine monolithium salt(PSLi)to regulate the SnO_(2)nanoparticles.PS-Li coordinates with SnO_(2)through the phosphate/carboxyl groups,with the exposed amino group passivating the uncoordinated lead ions at the interface.The introduction of a lithium ion further regulates the energy band of SnO_(2),accelerating electron extraction and transport.This multifunctional modulation strategy reduces trap states from tin dangling bonds and oxygen vacancies,enhancing film conductivity.It also regulates the growth of the perovskite crystal and reduces nonradiative recombination at the interface.Consequently,the optimized perovskite solar cells achieve power conversion efficiencies(PCEs)of 24.91% for small-area devices and 23.14% for minimodules(aperture area of 30 cm^(2)).The unencapsulated device retains 91% and 89% of its initial PCE after enduring 1000 h under ambient conditions,and 500 h under 1 sun illumination in N2atmosphere,respectively.