Change detection(CD)plays a crucial role in numerous fields,where both convolutional neural networks(CNNs)and Transformers have demonstrated exceptional performance in CD tasks.However,CNNs suffer from limited recepti...Change detection(CD)plays a crucial role in numerous fields,where both convolutional neural networks(CNNs)and Transformers have demonstrated exceptional performance in CD tasks.However,CNNs suffer from limited receptive fields,hindering their ability to capture global features,while Transformers are constrained by high computational complexity.Recently,Mamba architecture,which is based on state space models(SSMs),has shown powerful global modeling capabilities while achieving linear computational complexity.Although some researchers have incorporated Mamba into CD tasks,the existing Mamba⁃based remote sensing CD methods struggle to effectively perceive the inherent locality of changed regions when flattening and scanning remote sensing images,leading to limitations in extracting change features.To address these issues,we propose a novel Mamba⁃based CD method termed difference feature fusion Mamba model(DFFMamba)by mitigating the loss of feature locality caused by traditional Mamba⁃style scanning.Specifically,two distinct difference feature extraction modules are designed:Difference Mamba(DMamba)and local difference Mamba(LDMamba),where DMamba extracts difference features by calculating the difference in coefficient matrices between the state⁃space equations of the bi⁃temporal features.Building upon DMamba,LDMamba combines a locally adaptive state⁃space scanning(LASS)strategy to enhance feature locality so as to accurately extract difference features.Additionally,a fusion Mamba(FMamba)module is proposed,which employs a spatial⁃channel token modeling SSM(SCTMS)unit to integrate multi⁃dimensional spatio⁃temporal interactions of change features,thereby capturing their dependencies across both spatial and channel dimensions.To verify the effectiveness of the proposed DFFMamba,extensive experiments are conducted on three datasets of WHU⁃CD,LEVIR⁃CD,and CLCD.The results demonstrate that DFFMamba significantly outperforms state⁃of⁃the⁃art CD methods,achieving intersection over union(IoU)scores of 90.67%,85.04%,and 66.56%on the three datasets,respectively.展开更多
利用遥感影像识别土地利用类型及监测其变化情况在城市规划和土地利用优化等领域发挥着重要作用。当前,相关数据集存在样本量少、类别划分不合理、数据不开源等局限,难以满足样本驱动的深度学习遥感信息提取范式的需求。本文构建了一个...利用遥感影像识别土地利用类型及监测其变化情况在城市规划和土地利用优化等领域发挥着重要作用。当前,相关数据集存在样本量少、类别划分不合理、数据不开源等局限,难以满足样本驱动的深度学习遥感信息提取范式的需求。本文构建了一个面向深度学习的大规模场景分类与变化检测数据集MtSCCD (Multi-temporal Scene Classification and Change Detection)。该数据集包括MtSCCD_LUSC (MtSCCD Land Use Scene Classification)和MtSCCD_LUCD (MtSCCD Land Use Change Detection)两个子数据集,分别用于土地利用场景分类与变化检测任务。该数据集具有以下特点:(1) MtSCCD是目前规模最大的公开的土地利用类型识别与检测数据集,包含10种土地利用类型共65548幅图像,并且样本覆盖中国5个城市的中心区域;(2)由于MtSCCD数据集根据城市划分训练集、验证集以及测试集,对于新增的城市土地利用数据,可以根据需求划分为训练集与验证集或测试集,因此可扩展性较高;(3) MtSCCD数据集中测试集与训练集的样本来自不同的城市,因此符合实际业务需求,且能够验证模型的泛化性能。基于MtSCCD_LUSC和MtSCCD_LUCD两个子数据集,本文评估了多个深度学习网络的分类与变化检测效果,为后续的相关研究提供了参考。展开更多
基金supported by the National Natural Science Foundation of China(Nos.42371449,41801386).
文摘Change detection(CD)plays a crucial role in numerous fields,where both convolutional neural networks(CNNs)and Transformers have demonstrated exceptional performance in CD tasks.However,CNNs suffer from limited receptive fields,hindering their ability to capture global features,while Transformers are constrained by high computational complexity.Recently,Mamba architecture,which is based on state space models(SSMs),has shown powerful global modeling capabilities while achieving linear computational complexity.Although some researchers have incorporated Mamba into CD tasks,the existing Mamba⁃based remote sensing CD methods struggle to effectively perceive the inherent locality of changed regions when flattening and scanning remote sensing images,leading to limitations in extracting change features.To address these issues,we propose a novel Mamba⁃based CD method termed difference feature fusion Mamba model(DFFMamba)by mitigating the loss of feature locality caused by traditional Mamba⁃style scanning.Specifically,two distinct difference feature extraction modules are designed:Difference Mamba(DMamba)and local difference Mamba(LDMamba),where DMamba extracts difference features by calculating the difference in coefficient matrices between the state⁃space equations of the bi⁃temporal features.Building upon DMamba,LDMamba combines a locally adaptive state⁃space scanning(LASS)strategy to enhance feature locality so as to accurately extract difference features.Additionally,a fusion Mamba(FMamba)module is proposed,which employs a spatial⁃channel token modeling SSM(SCTMS)unit to integrate multi⁃dimensional spatio⁃temporal interactions of change features,thereby capturing their dependencies across both spatial and channel dimensions.To verify the effectiveness of the proposed DFFMamba,extensive experiments are conducted on three datasets of WHU⁃CD,LEVIR⁃CD,and CLCD.The results demonstrate that DFFMamba significantly outperforms state⁃of⁃the⁃art CD methods,achieving intersection over union(IoU)scores of 90.67%,85.04%,and 66.56%on the three datasets,respectively.
文摘利用遥感影像识别土地利用类型及监测其变化情况在城市规划和土地利用优化等领域发挥着重要作用。当前,相关数据集存在样本量少、类别划分不合理、数据不开源等局限,难以满足样本驱动的深度学习遥感信息提取范式的需求。本文构建了一个面向深度学习的大规模场景分类与变化检测数据集MtSCCD (Multi-temporal Scene Classification and Change Detection)。该数据集包括MtSCCD_LUSC (MtSCCD Land Use Scene Classification)和MtSCCD_LUCD (MtSCCD Land Use Change Detection)两个子数据集,分别用于土地利用场景分类与变化检测任务。该数据集具有以下特点:(1) MtSCCD是目前规模最大的公开的土地利用类型识别与检测数据集,包含10种土地利用类型共65548幅图像,并且样本覆盖中国5个城市的中心区域;(2)由于MtSCCD数据集根据城市划分训练集、验证集以及测试集,对于新增的城市土地利用数据,可以根据需求划分为训练集与验证集或测试集,因此可扩展性较高;(3) MtSCCD数据集中测试集与训练集的样本来自不同的城市,因此符合实际业务需求,且能够验证模型的泛化性能。基于MtSCCD_LUSC和MtSCCD_LUCD两个子数据集,本文评估了多个深度学习网络的分类与变化检测效果,为后续的相关研究提供了参考。