期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
线性调频激励的倒装芯片高频超声回波解卷积与缺陷检测
1
作者 宿磊 谢万隆 +4 位作者 明雪飞 顾杰斐 赵新维 李可 pecht michael 《声学学报》 北大核心 2025年第1期128-137,共10页
针对倒装焊芯片高频超声检测回波微弱、信号混叠、受噪声影响大导致焊球缺陷难以准确检测的难题,提出一种基于预调制线性调频(LFM)激励和自回归谱外推法的高频超声检测方法。建立倒装焊芯片缺陷高频超声检测仿真模型,结合超声探头响应设... 针对倒装焊芯片高频超声检测回波微弱、信号混叠、受噪声影响大导致焊球缺陷难以准确检测的难题,提出一种基于预调制线性调频(LFM)激励和自回归谱外推法的高频超声检测方法。建立倒装焊芯片缺陷高频超声检测仿真模型,结合超声探头响应设计LFM信号作为探头激励信号,采用预调制LFM信号作参考信号对回波信号进行脉冲压缩,抑制噪声,信噪比平均提高12 dB;利用改进协方差法计算信号有效频带的自回归系数,对脉冲压缩后超声信号有效频带进行频谱外推,分离混叠回波信号;通过参数化扫描获取倒装焊芯片B扫描图像,对含噪声B扫描矩阵进行脉冲压缩、计算自回归系数矩阵及频谱外推,经滑动平均滤波进一步抑制噪声亮斑,对比分析无缺陷焊球模型和裂纹、孔洞焊球模型结果。仿真结果表明,该方法能够大幅提高B扫图时域分辨率,在-4 dB噪声影响下仍有较好效果。通过提取B扫图回波峰值所在时间,结合材料声速可计算缺陷预埋深度。在裂纹、孔洞缺陷焊球模型中预埋深计算误差均小于5%,可实现焊球缺陷识别与定位。 展开更多
关键词 倒装焊芯片 缺陷检测 高频超声 线性调频信号 自回归谱外推
原文传递
An improved empirical wavelet transform method for rolling bearing fault diagnosis 被引量:14
2
作者 HUANG HaiRun LI Ke +5 位作者 SU WenSheng BAI JianYi XUE ZhiGang ZHOU Lang SU Lei pecht michael 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第11期2231-2240,共10页
Empirical wavelet transform(EWT)based on the scale space method has been widely used in rolling bearing fault diagnosis.However,using the scale space method to divide the frequency band,the redundant components can ea... Empirical wavelet transform(EWT)based on the scale space method has been widely used in rolling bearing fault diagnosis.However,using the scale space method to divide the frequency band,the redundant components can easily be separated,causing the band to rupture and making it difficult to extract rolling bearing fault characteristic frequency effectively.This paper develops a method for optimizing the frequency band region based on the frequency domain feature parameter set.The frequency domain feature parameter set includes two characteristic parameters:mean and variance.After adaptively dividing the frequency band by the scale space method,the mean and variance of each band are calculated.Sub-bands with mean and variance less than the main frequency band are combined with surrounding bands for subsequent analysis.An adaptive empirical wavelet filter on each frequency band is established to obtain the corresponding empirical mode.The margin factor sensitive to the shock pulse signal is introduced into the screening of empirical modes.The empirical mode with the largest margin factor is selected to envelope spectrum analysis.Simulation and experiment data show this method avoids over-segmentation and redundancy and can extract the fault characteristic frequency easier compared with only scale space methods. 展开更多
关键词 fault diagnosis empirical wavelet transform scale space method feature parameter margin factor
原文传递
A novel approach for flip chip inspection based on improved SDELM and vibration signals 被引量:4
3
作者 SU Lei ZHANG SiYu +5 位作者 JI Yong WANG Gang MING XueFei GU JieFei LI Ke pecht michael 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第5期1087-1097,共11页
This paper proposes a novel nondestructive diagnostic method for flip chips based on an improved semi-supervised deep extreme learning machine(ISDELM)and vibration signals.First,an ultrasonic transducer is used to gen... This paper proposes a novel nondestructive diagnostic method for flip chips based on an improved semi-supervised deep extreme learning machine(ISDELM)and vibration signals.First,an ultrasonic transducer is used to generate and focus ultrasounds on the surface of the flip chip to excite it,and a laser scanning vibrometer is applied to acquire the chip’s vibration signals.Then,an extreme learning machine-autoencoder(ELM-AE)structure is adopted to extract features from the original vibration signals layer by layer.Finally,the study proposes integrating the ELM with sparsity neighboring reconstruction to diagnose defects based on unlabeled and labeled data.The ISDELM algorithm is applied to experimental vibration data of flip chips and compared with several other algorithms,such as semi-supervised ELM(SS-ELM),deep ELM,stacked autoencoder,convolutional neural network,and ordinary SDELM.The results show that the proposed method is superior to the several currently available algorithms in terms of accuracy and stability. 展开更多
关键词 flip chip nondestructive diagnosis improved semi-supervised deep extreme learning machine vibration signal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部