期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Corrigendum to “High-temperature fatigue strength of grain boundaries with different misorientations in nickel-based superalloy bicrystals” [Journal of Materials Science & Technology, 154 (2023) 94–106]
1
作者 D.F.Shi Z.J.Zhang +4 位作者 Y.H.Yang Y.Z.Zhou R.Liu p.zhang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第10期264-264,共1页
The authors regret to inform that the whole“Acknowledgements”section is missing due to the composing process of the editing.The“Acknowledgements”information that should be added is as follows.
关键词 SUPERALLOY fatigue GRAIN
原文传递
A practical model for efficient anti-fatigue design and selection of metallic materials:Ⅰ.Model building and fatigue strength prediction 被引量:14
2
作者 R.Liu p.zhang +2 位作者 Z.J.Zhang B.Wang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第11期233-249,共17页
The high cost and low efficiency of fatigue tests are bottleneck problem for the anti-fatigue design of metallic materials.For this problem,a theoretical fatigue model is proposed in this study,the possible applicatio... The high cost and low efficiency of fatigue tests are bottleneck problem for the anti-fatigue design of metallic materials.For this problem,a theoretical fatigue model is proposed in this study,the possible applications have also been discussed.Specific results would be introduced in two serial papers,in which the first paper focuses on the model building and the applications on fatigue strength prediction;the second paper put emphasis on the influencing factors of the model parameters and the applications on fatigue strength improvement.In this first paper,a theoretical model is proposed considering both the strength and plastic restrictions of fatigue strength.As the model builds up a brief relationship among yield strength(Y),tensile strength(T)and fatigue strength(F),it is named as the Y-T-F model.Through the verification with fatigue strength data covering various kinds of metallic materials and loading conditions,this Y-T-F model exhibits both generality and accuracy.With the Y-T-F model,the efficient fatigue strength prediction could be conducted by brief linear fitting and calculation,just through yield strength,tensile strength and several known fatigue strength data.Moreover,through its deduced Y-F model,the analytical formula of fatigue strength continuously changing with materials strengthening can be obtained,as well as the maximum value of fatigue strength and corresponding critical yield strength.In summary,the Y-T-F model would be useful for reducing the fatigue tests,thus providing new possibilities on the efficient anti-fatigue design and selection of metallic materials. 展开更多
关键词 Yield strength Tensile strength PLASTICITY Fatigue strength Anti-fatigue design
原文传递
A practical model for efficient anti-fatigue design and selection of metallic materials:Ⅱ.Parameter analysis and fatigue strength improvement 被引量:9
3
作者 R.Liu p.zhang +2 位作者 Z.J.Zhang B.Wang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第11期250-267,共18页
In the first paper,a Y-T-F model was proposed based on the restrictions of both strength and plasticity;the corresponding applications on the fatigue strength prediction have also been discussed.In this second paper,t... In the first paper,a Y-T-F model was proposed based on the restrictions of both strength and plasticity;the corresponding applications on the fatigue strength prediction have also been discussed.In this second paper,the emphasis will be put on the issues of fatigue strength improvement.Based on the primary form of the Y-T-F model,the parameters are further analyzed and quantified,to clarify the influences of various factors on fatigue strength.Firstly,the damage capacity C is proved to be sensitive to the elastic modulus E,which could change with the alloying components and nano-scaled grain boundaries;the increase of E would lead to the increasing C,thus increase the fatigue strength.Secondly,the microstructure characteristic coefficient a,as well as the yield strengthσ_(y) and tensile strengthσ_(b) in the crack initiation region could be influenced by the processing mode,grain size and microstructure uniformity of materials;the change of microstructure characteristics would affect the changing tendency of tensile strength--fatigue strength relation via varying the values of a,σ_(y) andσ_(b).Thirdly,the damage weight coefficientωis found to be a reflection of the fatigue strength declination induced by defects;the defect dimension D,the defect shape correlated stress concentration coefficient Kt,as well as the strengthening level of matrix materialsσ_(b) are all corresponding factors.Quantified correlations between the above parameters and corresponding factors are comprehensively built up,hence obtaining the influences of either a single factor or multiple factors on fatigue strength.This further developed Y-T-F model would be helpful to clarify the direction of fatigue strength improvement,and contribute to the anti-fatigue design optimization of metallic materials. 展开更多
关键词 Fatigue strength improvement Alloying component Elastic modulus MICROSTRUCTURE Characteristics DEFECT Anti-fatigue design
原文传递
Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations 被引量:7
4
作者 T.Cai K.Q.Li +4 位作者 Z.J.Zhang p.zhang R.Liu J.B.Yang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第18期61-65,共5页
The variation of stacking fault energy(SFE)in a number of binary Cu alloys is predicted through considering the Suzuki segregation by the full potential linearly augmented plane wave(FPLAPW)method.The calculated resul... The variation of stacking fault energy(SFE)in a number of binary Cu alloys is predicted through considering the Suzuki segregation by the full potential linearly augmented plane wave(FPLAPW)method.The calculated results show that some solute atoms(Mg,Al,Si,Zn,Ga,Ge,Cd,Sn,and Pb),which prefer to form the Suzuki segregation,may decrease the value of SFE;while the others(Ti,Mn,Fe,Ni,Zr,Ag,and Au),which do not cause the Suzuki segregation may not decrease the SFE.Furthermore,it is interesting to find that the former alloying elements are located on the right of Cu group while the latter on the left of Cu group in the periodic table of elements.The intrinsic reasons for the new findings can be traced down to the valences electronic structure of solute and Cu atoms,i.e.,the similarity of valence electronic structure between solute and Cu atoms increases the value of SFE,while the difference decreases the value of SFE. 展开更多
关键词 Cu-alloy Deformation behavior First-principles calculation Stacking fault energy
原文传递
Predictive fatigue crack growth law of high-strength steels 被引量:6
5
作者 H.F.Li p.zhang +1 位作者 B.Wang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第5期46-50,共5页
The fatigue resistance of metallic materials is generally attributed to both strength and toughness.Unfortunately,these properties are mutually exclusive in most materials.Classical theories like Paris’law only provi... The fatigue resistance of metallic materials is generally attributed to both strength and toughness.Unfortunately,these properties are mutually exclusive in most materials.Classical theories like Paris’law only provide some data correlation schemes rather than a predictive capability,which cannot satisfactorily guide the anti-fatigue design.In this study,for the first time,the predictive fatigue crack growth rate law is proposed by considering the effects of both strength and toughness.Accordingly,a quantitative criterion is established for judging the fatigue crack resistance of high-strength steels.The predictive law would provide a unique view to the quantitative anti-fatigue design of metallic materials. 展开更多
关键词 Fatigue crack growth Strength and toughness Paris’law High-strength steels
原文传递
Longwall mining,shale gas production,and underground miner safety and health 被引量:4
6
作者 D.W.H.Su p.zhang +2 位作者 H.Dougherty M.Van Dyke R.Kimutis 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第3期523-529,共7页
This paper presents the results of a unique study conducted by the National Institute for Occupational Safety and Health(NIOSH)from 2016 to 2019 to evaluate the effects of longwall-induced subsurface deformations on s... This paper presents the results of a unique study conducted by the National Institute for Occupational Safety and Health(NIOSH)from 2016 to 2019 to evaluate the effects of longwall-induced subsurface deformations on shale gas well casing integrity and underground miner safety and health.At both deep-cover and shallow-cover instrumentation sites,surface subsidence measurements,subsurface inplace inclinometer measurements,and underground pillar pressure measurements were conducted as longwall panels were mined.Comparisons of the deep-cover and shallow-cover test site results with those from a similar study under medium cover reveal an interesting longwall-induced response scenario.Under shallow and medium covers,measured horizontal displacements within the abutment pillar are one order of magnitude higher than those measured under deep cover.On the other hand,measured vertical compressions under deep cover are one order of magnitude higher than those under shallow and medium covers.However,FLAC3 Dsimulations of the casings indicate that,in all three cases,the P-110 production casings remain intact under longwall-induced deformations and compressions,which has serious implications for future mine design in areas where shale gas wells have been drilled ahead of mining. 展开更多
关键词 LONGWALL MINING COAL GAS MINER Safety HEALTH
在线阅读 下载PDF
Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys 被引量:4
7
作者 J.X.Yan Z.J.Zhang +5 位作者 p.zhang J.H.Liu H.Yu Q.M.Hu J.B.Yang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第8期232-244,共13页
The development of multi-principal element alloys(MPEAs,also called as high-or medium-entropy al-loys,HEAs/MEAs)provides tremendous possibilities for materials innovation.However,designing MPEAs with desirable mechani... The development of multi-principal element alloys(MPEAs,also called as high-or medium-entropy al-loys,HEAs/MEAs)provides tremendous possibilities for materials innovation.However,designing MPEAs with desirable mechanical properties confronts great challenges due to their vast composition space.In this work,we provide an essential criterion to efficiently screen the CoCrNi MEAs with outstanding strength-ductility combinations.The negative Gibbs free energy difference△E_(FCC-BCC)between the face-centered cubic(FCC)and body-centered cubic(BCC)phases,the enhancement of shear modulus G and the decline of stacking fault energy(SFE)γ_(isf)are combined as three requisites to improve the FCC phase stability,yield strength,deformation mechanisms,work-hardening ability and ductility in the criterion.The effects of chemical composition on△E_(FCC-BCC),G andγisf were investigated with the first principles calculations for Co_(x)Cr_(33)Ni_(67-x),Co_(33)Cr_(y)Ni_(67-y)and Co_(z)Cr_(66-z)Ni_(34)(0≤x,y≤67 and 0≤z≤66)alloys.Based on the essential criterion and the calculation results,the composition space that displays the neg-ative Gibbs free energy difference△E_(FCC-BCC),highest shear modulus G and lowest SFEγ_(isf)was screened with the target on the combination of high strength and excellent ductility.In this context,the optimal composition space of Co-Cr-Ni alloys was predicted as 60 at.%-67 at.%Co,30 at.%-35 at.%Cr and 0 at.%-6 at.%Ni,which coincides well with the previous experimental evidence for Co_(55)Cr_(40)Ni_(5)alloys.The valid-ity of essential criterion is further proved after systematic comparison with numerous experimental data,which demonstrates that the essential criterion can provide significant guidance for the quick exploitation of strong and ductile MEAs and promote the development and application of MPEAs. 展开更多
关键词 Medium-entropy alloys First-principles calculations Phase stability Stacking-fault energy Strength DUCTILITY
原文传递
Enhancing the high-temperature creep properties of Mo alloys via nanosized La_(2)O_(3) particle addition 被引量:5
8
作者 P.M.Cheng C.Yang +5 位作者 p.zhang J.Y.Zhang H.Wang J.Kuang G.Liu J.Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第35期53-63,共11页
Molybdenum(Mo) alloys with different La_(2)O_(3)particle additions(0.6,0.9,1.5 wt.%) were prepared by powder metallurgy to investigate the effect of La_(2)O_(3)particles on microstructural evolution and creep behavior... Molybdenum(Mo) alloys with different La_(2)O_(3)particle additions(0.6,0.9,1.5 wt.%) were prepared by powder metallurgy to investigate the effect of La_(2)O_(3)particles on microstructural evolution and creep behavior of the alloy.Pure Mo,annealed at 1500℃ for 1 h,presented a fully recrystallized microstructure characterized by equiaxed grains.The alloys doped with La_(2)O_(3)particles(Mo-La_(2)O_(3)alloys),on the other hand,exhibited fibrous grains elongated in the rolling direction of the plate.In contrast to the shape of the grains,the average grain size of the alloys was found to be insensitive to the addition of La_(2)O_(3)particles.Nanosized La_(2)O_(3)particles with diameters ranging from 65 to 75 nm were distributed within the grain interior.Tensile creep tests showed that dislocation creep was the predominant deformation mode at intermediate creep rate(10^(-7)s^(-1)-10^(-4)s^(-1)) in the present alloys.The creep stress exponent and activation energy were found to decrease with increasing temperature,particularly within the low creep rate regime(<10^(-7)s^(-1)).The Mo-La_(2)O_(3)alloys exhibited remarkably greater apparent stress exponent and activation energy than pure Mo.A creep constitutive model based on the interaction between particles and dislocations was utilized to rationalize the nanoparticle-improved creep behavior.It was demonstrated that low relaxed efficiency of dislocation line energy,which is responsible for an enhanced climb resistance of dislocations,is the major creep strengthening mechanism in the Mo-La_(2)O_(3)alloys.In addition,the area reduction and creep fracture mode of the Mo-La_(2)O_(3)alloys were found to be a function of the creep rate and temperature,which can be explained by the effect of the two parameters on the creep and fracture mechanisms. 展开更多
关键词 Mo alloys Nanosized particles Creep strength Deformation and fracture
原文传递
High-temperature fatigue strength of grain boundaries with different misorientations in nickel-based superalloy bicrystals 被引量:3
9
作者 D.F.Shi Z.J.Zhang +4 位作者 Y.H.Yang Y.Z.Zhou R.Liu p.zhang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第23期94-106,共13页
Nickel-based single-crystal superalloys are widely used in the manufacture of aeroengine turbine vanes for their excellent high-temperature performance. Low-angle grain boundaries (LAGBs) will be generated inevitably ... Nickel-based single-crystal superalloys are widely used in the manufacture of aeroengine turbine vanes for their excellent high-temperature performance. Low-angle grain boundaries (LAGBs) will be generated inevitably during their manufacture, which are often characterized by grain boundary misorientation (GBM) and will weaken the mechanical properties of superalloys. However, the relationship between GBM and the fatigue properties of superalloys at elevated temperatures has seldom been investigated due to the difficulty in the sample preparation and experiment process. Based on six kinds of bicrystals with different tilt LAGBs made by a second-generation single-crystal superalloy, the effects of misorientation on the grain boundary microstructure and fatigue properties (980 °C) of superalloys were studied systematically in this work. It is found that, with the increase of GBM, the GB precipitates combined with the cast micropores increase monotonically, accordingly both the fatigue life and fatigue strength decrease successively. Fatigue fracture observations show that the cracks of all the bicrystals initiated from the cast micropores at GBs, and then propagated along the GBs. Therefore, the coupling effect of cast micropores and GBM on the fatigue damage mechanisms of the bicrystals are evaluated according to their hindering degrees on the piled-up dislocations. Combining with a hysteresis energy model, a quantitative fatigue strength prediction model of superalloys is established and is well verified by abundant experimental data. This study could provide guidance for fatigue performance prediction and structural design of superalloys. 展开更多
关键词 SUPERALLOYS BICRYSTALS Grain boundary misorientation Fatigue strength Fatigue crack
原文传递
Deformation behaviors of Cu bicrystals with an inclined twin boundary at multiple scales 被引量:6
10
作者 L.L.Li Z.J.Zhang +3 位作者 p.zhang J.Tan J.B.Yang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第7期698-702,共5页
Cu bicrystals of different sizes with a sole twin boundary(TB) inclined at 45?with respect to the loading direction were deformed under unidirectional and cyclic loading, respectively. It is found that the slip ba... Cu bicrystals of different sizes with a sole twin boundary(TB) inclined at 45?with respect to the loading direction were deformed under unidirectional and cyclic loading, respectively. It is found that the slip bands(SBs) parallel to the TB can be activated near the TB at all scales without obeying the Schmid's law.It is concerned with the local stress enhancement in the macroscale while it is more closely related to the scarce dislocation sources in the microscale. Moreover, a wedge-shaped zone formed near the TB in the microscale ascribed to the limited specimen size. 展开更多
关键词 Bicrystal Micropillar Twin boundary Schmid factors Size effect
原文传递
Examining the effect of the aging state on strength and plasticity of wrought aluminum alloys
11
作者 Z.Qu Z.J.Zhang +5 位作者 J.X.Yan p.zhang B.S.Gong S.L.Lu Z.F.Zhang T.G.Langdon 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第27期54-67,共14页
A general rule of strength and plasticity was proposed for three typical wrought Al alloys(2xxx,6xxx,and 7xxx)subjected to different aging times.Investigations of the work-hardening processes and dislocation configura... A general rule of strength and plasticity was proposed for three typical wrought Al alloys(2xxx,6xxx,and 7xxx)subjected to different aging times.Investigations of the work-hardening processes and dislocation configurations in tensile and compressive testing reveal that this general rule arises because there is a common mechanism for these three kinds of wrought alloys whereby the tendency for cross-slip increases monotonously with aging time.By analyzing the strain hardening exponent and the stacking fault energy,it is demonstrated that the change in the dislocation slip mode is attributed mainly to the formation of second phases rather than to the matrix composition.Accordingly,a new work-hardening model was proposed for wrought Al alloys containing second phases and this explains the interaction between dislocations and second phases and other relevant experimental phenomena.This work is therefore beneficial for quantitatively investigating and optimizing the strength and plasticity of wrought aluminum alloys. 展开更多
关键词 Wrought aluminum alloy Strength and plasticity Work hardening Dislocation slip mode Second phase
原文传递
STRESS CORROSION CRACKING IN 16NiCo STEEL
12
作者 p.zhang B.Z Guand B. Ling (Beijing Institute of Aeronautical Materials, Beijing 100095, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1997年第3期256-262,共7页
The dst of tempering temperature on strength, impact toughness, fracture toughness and stress corrosion cracking (SCC) behavior of 16NiCo Steel in an aqueons solutiou of 3.5 pct NaCl was stndied. The test compromise b... The dst of tempering temperature on strength, impact toughness, fracture toughness and stress corrosion cracking (SCC) behavior of 16NiCo Steel in an aqueons solutiou of 3.5 pct NaCl was stndied. The test compromise between strength, tonghness, and SCC resistance was obtained after 510℃ tempering. Under these conditions, KISCC is~75 MPam with fracture toughness of~75 MPam, impact toughness of~150J/cm2 and a gield strength of~1580 MPa. The improved stress corrosion crack-ing resistance at 510℃ tempering may be related to the loss of stress resulting from M2C/matrix coherency and the recovery of the dislocalion substrvcture. These would lead to a decreased concentration of hydrogen. 展开更多
关键词 streas corrosion secondary hardeing 16NiCo steel
在线阅读 下载PDF
A TELEMONITORING NETWORK:DESIGN AND CLINICAL TEST
13
作者 J.Bai Y.Zhang +9 位作者 B.Dai J.Lin Z.Zhu Z.Cui J.Zhang p.zhang D.Shen S.Yao S.Cd D.Ye 《Chinese Journal of Biomedical Engineering(English Edition)》 1995年第2期53-54,共2页
关键词 NETWORK MYOCARDITIS
暂未订购
Precise measurement of the χ_(c 0) resonance parameters and branching fractions ofχ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−)
14
作者 M.Ablikim M.N.Achasov +669 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin X.Y.Chai J.F.Chang G.R.Che Y.Z.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denisenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu Q.P.Hu S.L.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang Y.S.Huang T.Hussain F.Hölzken N.Hüsken N.in der Wiesche J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn L.Lavezzi T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li K.L.Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li T.Y.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li X.Z.Li Y.G.Li Z.J.Li Z.Y.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin C.X.Lin D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma L.R.Ma M.M.Ma Q.M.Ma R.Q.Ma T.Ma X.T.Ma X.Y.Ma Y.M.Ma F.E.Maas I.MacKay M.Maggiora S.Malde Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao X.K.Qiao J.J.Qin L.Q.Qin L.Y.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner M.Q.Ruan S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi J.L.Shi J.Y.Shi Q.Q.Shi S.Y.Shi X.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler S.S Su Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang J.J.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.H.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.Xu Y.C.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang J.H.Yang T.Yang Y.Yang Y.F.Yang Y.F.Yang Y.X.Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Junhao Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu M.C.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang p.zhang Q.Y.Zhang R.Y.Zhang S.H.Zhang Shulei Zhang X.M.Zhang X.Y Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao L.Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou Z.C.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 2025年第9期1-11,共11页
By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0... By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) events.The mass of χ_(c 0) is determined to be M (χ_(c 0))=(3415.63±0.07±0.07±0.07)MeV/c^(2),and its full width is F (χ_(c 0))=(12.52±0.12±0.13)MeV,where the first uncertainty is statistical,the second systematic,and the third for mass comes from χ_(c 2) mass uncertainty.These measurements improve the precision of χ_(c 0) mass by a factor of four and width by one order of magnitude over the previous individual measurements,and significantly boost our knowledge about the charmonium spectrum.Together with additional (345.4±2.6)×10^(6)(3686) data events taken in 2012,the decay branching fractions of χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) are measured as well,with precision improved by a factor of three compared to previous measurements.These χ_(c 0) decay branching fractions provide important inputs for the study of glueballs. 展开更多
关键词 χ_(c 0) BESII CHARMONIUM resonance parameter branching fraction
原文传递
Search for radiative leptonic decay D^(+)→γe^(+)ν_(e) using deep learning
15
作者 M.Ablikim M.N.Achasov +712 位作者 P.Adlarson X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai M.H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin X.Y.Chai J.F.Chang G.R.Che Y.Z.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen X.Y.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.K.Chen S.K.Choi X.Chu G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding Y.X.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov G.F.Fan J.J.Fan Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.Gao Y.N.Gao Y.N.Gao Y.Y.Gao S.Garbolino I.Garzia P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen J.D.Gong L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch K.D.Hao X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu Q.P.Hu S.L.Hu T.Hu Y.Hu Z.M.Hu G.S.Huang K.X.Huang L.Q.Huang P.Huang X.T.Huang Y.P.Huang Y.S.Huang T.Hussain N.Hüsken N.in der Wiesche J.Jackson Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.J.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn Q.Lan W.N.Lan T.T.Lei M.Lellmann T.Lenz C.Li C.Li C.Li C.H.Li C.K.Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li K.L.Li K.L.Li L.J.Li Lei Li M.H.Li M.R.Li P.L.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li T.Y.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li X.Z.Li Y.Li Y.G.Li Y.P.Li Z.J.Li Z.Y.Li C.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.B.Liao M.H.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin C.X.Lin D.X.Lin L.Q.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.J.Liu K.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu W.T.Liu X.Liu X.Liu X.L.Liu X.Y.Liu Y.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu Y.Lu Y.H.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo J.S.Luo M.X.Luo T.Luo X.L.Luo Z.Y.Lv X.R.Lyu Y.F.Lyu Y.H.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma L.R.Ma Q.M.Ma R.Q.Ma R.Y.Ma T.Ma X.T.Ma X.Y.Ma Y.M.Ma F.E.Maas I.MacKay M.Maggiora S.Malde Q.A.Malik Y.J.Mao Z.P.Mao S.Marcello F.M.Melendi Y.H.Meng Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura F.Z.Qi H.R.Qi M.Qi S.Qian W.B.Qian C.F.Qiao J.H.Qiao J.J.Qin J.L.Qin L.Q.Qin L.Y.Qin P.B.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer A.Rivetti M.Rolo G.Rong S.S.Rong F.Rosini Ch.Rosner M.Q.Ruan S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi J.L.Shi J.Y.Shi S.Y.Shi X.Shi H.L.Song J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler S.S Su Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun Y.C.Sun Y.H.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang J.J.Tang L.F.Tang Y.A.Tang L.Y.Tao M.Tat J.X.Teng J.Y.Tian W.H.Tian Y.Tian Z.F.Tian I.Uman B.Wang B.Wang Bo Wang C.Wang Cong Wang D.Y.Wang H.J.Wang J.J.Wang K.Wang L.L.Wang L.W.Wang M.Wang M.Wang N.Y.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.H.Wang Y.J.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Yuan Wang Z.Wang Z.L.Wang Z.L.Wang Z.Q.Wang Z.Y.Wang D.H.Wei H.R.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke C.Wu J.F.Wu L.H.Wu L.J.Wu L.J.Wu Lianjie Wu S.G.Wu S.M.Wu X.Wu X.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang D.Xiao G.Y.Xiao H.Xiao Y.L.Xiao Z.J.Xiao C.Xie K.J.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu T.D.Xu W.Xu W.L.Xu X.P.Xu Y.Xu Y.Xu Y.C.Xu Z.S.Xu F.Yan H.Y.Yan L.Yan W.B.Yan W.C.Yan W.H.Yan W.P.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang J.H.Yang R.J.Yang T.Yang Y.Yang Y.F.Yang Y.H.Yang Y.Q.Yang Y.X.Yang Y.Z.Yang M.Ye M.H.Ye Z.J.Ye Junhao Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu L.Q.Yu M.C.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan H.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan X.Q.Yuan Y.Yuan Z.Y.Yuan C.X.Yue Ying Yue A.A.Zafar S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang N.Zhang p.zhang Q.Zhang Q.Y.Zhang R.Y.Zhang S.H.Zhang Shulei Zhang X.M.Zhang X.Y Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Y.p.zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.L.Zhang Z.X.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang Zh.Zh.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao L.Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.L.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng X.R.Zheng Y.H.Zheng B.Zhong C.Zhong H.Zhou J.Q.Zhou J.Y.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu T.J.Zhu W.D.Zhu W.D.Zhu W.J.Zhu W.Z.Zhu Y.C.Zhu Z.A.Zhu X.Y.Zhuang J.H.Zou J.Zu 《Chinese Physics C》 2025年第8期1-15,共15页
Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limi... Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limit on its partial branching fraction for photon energies E_(γ)>10 MeV was determined to be 1.2×10^(-5)at a 90%confidence level;this excludes most current theoretical predictions.A sophisticated deep learning approach,which includes thorough validation and is based on the Transformer architecture,was implemented to efficiently distinguish the signal from massive backgrounds. 展开更多
关键词 charmed hadron radiative leptonic decay BESIl experiment deep learning
原文传递
Search for the lepton number violation decay ϕ→π^(+)π^(+)e^(−)e^(−)via J/ψ→ϕη^(*)
16
作者 M.Ablikim M.N.Achasov +627 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso M.R.An Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang G.R.Che Y.Z.Che G.Chelkov C.Chen Chao Chen G.Chen H.S.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi G.Cibinetto S.C.Coen F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Z.H.Duan P.Egorov Y.H.Fan J.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng K.Fischer M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez T.T.Han W.Y.Han X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang T.Hussain F.Hölzken N.Hüsken N.in der Wiesche J.Jackson S.Jaeger S.Janchiv Q.Ji Q.P.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi R.Kliemt O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn J.J.Lane P.Larin A.Lavania L.Lavezzi T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li J.W.Li K.Li K.L.Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.X.Li S.X.Li T.Li W.D.Li W.G.Li X.H.Li X.L.Li X.Y.Li Y.G.Li Z.J.Li Z.X.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.P.Liao J.Libby A.Limphirat D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma X.Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Malde A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan P.Patteri Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao X.K.Qiao J.J.Qin L.Q.Qin L.Y.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner M.Q.Ruan S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi X.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang C.W.Wang D.Y.Wang F.Wang H.J.Wang J.P.Wang K.Wang L.L.Wang L.W.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.H.Wei F.Weidner S.P.Wen Wenzel U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.Xu Y.C.Xu Z.P.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang T.Yang Y.Yang Y.F.Yang Y.F.Yang Y.X.Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang p.zhang Q.Y.Zhang S.H.Zhang Shulei Zhang X.D.Zhang X.M.Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.X.Zhang Yan Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao Lei Zhao M.G.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong L.P.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou J.Zhu K.Zhu K.J.Zhu L.Zhu L.X.Zhu S.H.Zhu S.Q.Zhu T.J.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu BESIII Collaboration 《Chinese Physics C》 2025年第4期1-10,共10页
Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation de... Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation decayφ→π^(+)π^(+)e^(-)e^(-)via J/ψ→φη.No obviously signals are found.The upper limit on the branching fraction ofφ→π^(+)π^(+)e^(-)e^(-)is set to be 1.3×10^(-5)at the 90%confidence level. 展开更多
关键词 Lepton number violation matter anti-matter asymmetry neutrinoless double beta decay
原文传递
Search for the lepton number violation decay ω→π^(+)π^(+)e^(-)e^(-)+c.c.
17
作者 M.Ablikim M.N.Achasov +727 位作者 P.Adlarson X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni A F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai M.H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin X.Y.Chai J.F.Chang G.R.Che Y.Z.Che C.H.Chen Chao Chen G.Chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen X.Y.Chen Y.B.Chen Y.Q.Chen Y.Q.Chen Z.Chen Z.J.Chen Z.K.Chen S.K.Choi X.Chu G.Cibinetto F.Cossio J.Cottee-Meldrum J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding Y.X.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov G.F.Fan J.J.Fan Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng L.Feng Q.X.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.Gao Y.N.Gao Y.N.Gao Y.Y.Gao Z.Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen J.D.Gong L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch K.D.Hao X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu Q.P.Hu S.L.Hu T.Hu Y.Hu Z.M.Hu G.S.Huang K.X.Huang L.Q.Huang P.Huang X.T.Huang Y.P.Huang Y.S.Huang T.Hussain N.Hüsken N.in der Wiesche J.Jackson Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.J.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn Q.Lan W.N.Lan T.T.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li C.K.Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li K.L.Li K.L.Li L.J.Li Lei Li M.H.Li M.R.Li P.L.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li T.Y.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li X.Z.Li Y.Li Y.G.Li Y.P.Li Z.J.Li Z.Y.Li C.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.B.Liao M.H.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin D.X.Lin L.Q.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.J.Liu K.Liu K.Liu K.Y.Liu Ke Liu L.C.Liu Lu Liu M.H.Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu W.T.Liu X.Liu X.Liu X.K.Liu X.L.Liu X.Y.Liu Y.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.H.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo J.S.Luo M.X.Luo T.Luo X.L.Luo Z.Y.Lv X.R.Lyu Y.F.Lyu Y.H.Lyu F.C.Ma H.L.Ma Heng Ma J.L.Ma L.L.Ma L.R.Ma Q.M.Ma R.Q.Ma R.Y.Ma T.Ma X.T.Ma X.Y.Ma Y.M.Ma F.E.Maas I.MacKay M.Maggiora S.Malde Q.A.Malik H.X.Mao Y.J.Mao Z.P.Mao S.Marcello A.Marshall F.M.Melendi Y.H.Meng Z.X.Meng G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu C.Normand S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak Y.P.Pei M.Pelizaeus H.P.Peng X.J.Peng Y.Y.Peng K.Peters K.Petridis J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.R.Qi M.Qi S.Qian W.B.Qian C.F.Qiao J.H.Qiao J.J.Qin J.L.Qin L.Q.Qin L.Y.Qin P.B.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu J.Rademacker C.F.Redmer A.Rivetti M.Rolo G.Rong S.S.Rong F.Rosini Ch.Rosner M.Q.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi J.L.Shi J.Y.Shi S.Y.Shi X.Shi H.L.Song J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song Zirong Song S.Sosio S.Spataro F.Stieler S.S Su Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun Y.C.Sun Y.H.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang J.J.Tang L.F.Tang Y.A.Tang L.Y.Tao M.Tat J.X.Teng J.Y.Tian W.H.Tian Y.Tian Z.F.Tian I.Uman B.Wang B.Wang Bo Wang C.Wang C.Wang Cong Wang D.Y.Wang H.J.Wang J.J.Wang K.Wang L.L.Wang L.W.Wang M.Wang M.Wang N.Y.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.H.Wang Y.J.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Yuan Wang Z.Wang Z.L.Wang Z.L.Wang Z.Q.Wang Z.Y.Wang D.H.Wei H.R.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke C.Wu J.F.Wu L.H.Wu L.J.Wu L.J.Wu Lianjie Wu S.G.Wu S.M.Wu X.Wu X.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang D.Xiao G.Y.Xiao H.Xiao Y.L.Xiao Z.J.Xiao C.Xie K.J.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu T.D.Xu W.Xu W.L.Xu X.P.Xu Y.Xu Y.Xu Y.C.Xu Z.S.Xu F.Yan H.Y.Yan L.Yan W.B.Yan W.C.Yan W.H.Yan W.P.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang J.H.Yang R.J.Yang T.Yang Y.Yang Y.F.Yang Y.H.Yang Y.Q.Yang Y.X.Yang Y.Z.Yang M.Ye M.H.Ye Z.J.Ye Junhao Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu L.Q.Yu M.C.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan H.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan X.Q.Yuan Y.Yuan Z.Y.Yuan C.X.Yue Ying Yue A.A.Zafar S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.H.Zhan Zhang A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang N.Zhang p.zhang Q.Zhang Q.Y.Zhang R.Y.Zhang S.H.Zhang Shulei Zhang X.M.Zhang X.Y Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Y.p.zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.L.Zhang Z.X.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang Zh.Zh.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao L.Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.L.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng X.R.Zheng Y.H.Zheng B.Zhong C.Zhong H.Zhou J.Q.Zhou J.Y.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.X.Zhou Y.Z.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu T.J.Zhu W.D.Zhu W.D.Zhu W.J.Zhu W.Z.Zhu Y.C.Zhu Z.A.Zhu X.Y.Zhuang J.H.Zou J.Zu BESIII Collaboration 《Chinese Physics C》 2025年第10期15-24,共10页
Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No s... Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No significant signal is observed,and the upper limit on the branching fraction ofω→π^(+)π^(+)e^(-)e^(-)+c.c.at the 90%confidence level is determined for the first time to be 2.8×10^(-6). 展开更多
关键词 lepton number violation matter anti-matter asymmetry neutrinoless double beta decay
原文传递
Search for the leptonic decay D^(+)→e^(+)ν_(e)
18
作者 M.Ablikim M.N.Achasov +668 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin X.Y.Chai J.F.Chang G.R.Che Y.Z.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu S.L.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang Y.S.Huang T.Hussain F.Hölzken N.Hüsken N.in der Wiesche J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn J.J.Lane L.Lavezzi T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li K.L.Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li X.Z.Li Y.G.Li Z.J.Li Z.Y.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma L.R.Ma M.M.Ma Q.M.Ma R.Q.Ma T.Ma X.T.Ma X.Y.Ma Y.M.Ma F.E.Maas I.MacKay M.Maggiora S.Malde Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao X.K.Qiao J.J.Qin L.Q.Qin L.Y.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner M.Q.Ruan S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi S.Y.Shi X.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler S.S Su Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang M.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.Xu Y.C.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang T.Yang Y.Yang Y.F.Yang Y.F.Yang Y.X.Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Junhao Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu M.C.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang N.Zhang p.zhang Q.Y.Zhang R.Y.Zhang S.H.Zhang Shulei Zhang X.M.Zhang X.Y Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao Lei Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou Z.C.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 2025年第6期1-10,共10页
We search for the leptonic decay D^(+)→e^(+)ν_(e)using an e+e-collision data sample with an integrated luminosity of 20.3 fb-1collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.Significant si... We search for the leptonic decay D^(+)→e^(+)ν_(e)using an e+e-collision data sample with an integrated luminosity of 20.3 fb-1collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.Significant signal is not observed,and an upper limit on the branching fraction of D^(+)→e^(+)ν_(e)is set as 9.7×10^(-7),at a confidence level of 90%.Our upper limit is an order of magnitude smaller than the previous limit for this decay mode. 展开更多
关键词 BESII charm physics leptonic decay
原文传递
Search for Cabibbo-suppressed decays Λ_(c)^(+)→Σ^(0)K^(+)π^(0) and Λ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−)
19
作者 M.Ablikim M.N.Achasov +691 位作者 P.Adlarson X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai M.H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin X.Y.Chai J.F.Chang G.R.Che Y.Z.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.K.Chen S.K.Choi X.Chu G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding Y.X.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov G.F.Fan J.J.Fan Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.N.Gao Y.N.Gao Y.Y.Gao Yang Gao S.Garbolino I.Garzia P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch K.D.Hao X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu Q.P.Hu S.L.Hu T.Hu Y.Hu Z.M.Hu G.S.Huang K.X.Huang L.Q.Huang P.Huang X.T.Huang Y.P.Huang Y.S.Huang T.Hussain N.Hüsken N.in der Wiesche J.Jackson S.Janchiv Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.J.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn Q.Lan W.N.Lan T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li C.K.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li K.L.Li K.L.Li L.J.Li Lei Li M.H.Li M.R.Li P.L.Li P.R.Li Q.M.Li Q.X.Li R.Li T.Li T.Y.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li X.Z.Li Y.Li Y.G.Li Z.J.Li Z.Y.Li C.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.B.Liao M.H.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin C.X.Lin D.X.Lin L.Q.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.J.Liu K.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu W.T.Liu X.Liu X.Liu X.Y.Liu Y.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu Y.Lu Y.H.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo J.S.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu Y.H.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma L.R.Ma Q.M.Ma R.Q.Ma R.Y.Ma T.Ma X.T.Ma X.Y.Ma Y.M.Ma F.E.Maas I.MacKay M.Maggiora S.Malde Y.J.Mao Z.P.Mao S.Marcello Y.H.Meng Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters e J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.R.Qi M.Qi S.Qian W.B.Qian C.F.Qiao J.H.Qiao J.J.Qin J.L.Qin L.Q.Qin L.Y.Qin P.B.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer A.Rivetti M.Rolo G.Rong S.S.Rong Ch.Rosner M.Q.Ruan S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi J.L.Shi J.Y.Shi S.Y.Shi X.Shi H.L.Song J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler S.S Su Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun Y.C.Sun Y.H.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang L.F.Tang M.Tang Y.A.Tang L.Y.Tao M.Tat J.X.Teng V.Thoren J.Y.Tian W.H.Tian Y.Tian Z.F.Tian I.Uman B.Wang B.Wang Bo Wang C.Wang D.Y.Wang H.J.Wang J.J.Wang K.Wang L.L.Wang L.W.Wang M.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.H.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Yuan Wang Z.Wang Z.L.Wang Z.Y.Wang D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke C.Wu J.F.Wu L.H.Wu L.J.Wu Lianjie Wu S.G.Wu S.M.Wu X.Wu X.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao H.Xiao Y.L.Xiao Z.J.Xiao C.Xie K.J.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu M.Xu Q.J.Xu Q.N.Xu W.L.Xu X.P.Xu Y.Xu Y.C.Xu Z.S.Xu F.Yan H.Y.Yan L.Yan W.B.Yan W.C.Yan W.P.Yan X.Q.Yan H.J.Yang f H.L.Yang H.X.Yang J.H.Yang R.J.Yang T.Yang Y.Yang Y.F.Yang Y.Q.Yang Y.X.Yang Y.Z.Yang M.Ye M.H.Ye Junhao Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu M.C.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan H.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue Ying Yue A.A.Zafar S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang N.Zhang p.zhang Q.Zhang Q.Y.Zhang R.Y.Zhang S.H.Zhang Shulei Zhang X.M.Zhang X.Y Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.L.Zhang Z.X.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang Zh.Zh.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao Lei Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.L.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng X.R.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou Z.C.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu T.J.Zhu W.D.Zhu W.J.Zhu W.Z.Zhu Y.C.Zhu Z.A.Zhu X.Y.Zhuang J.H.Zou J.Zu 《Chinese Physics C》 2025年第7期14-26,共13页
Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed h... Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed hadronic decaysΛ_(c)^(+)→Σ^(0)K^(+)π^(0)andΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−)and with a single-tag method.No significant signals were observed for both decays.The upper limits on the branching fractions at the 90%confidence level were determined to be 5.0×10^(-4)for and forΛ_(c)^(+)→Σ^(0)K^(+)π^(0)and 6.5×10^(-4)forΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−). 展开更多
关键词 Charmed baryon SCS decay BESIII Experiment
原文传递
Amplitude analysis of the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)
20
作者 M.Ablikim M.N.Achasov +642 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang W.L.Chang G.R.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi X.Chu G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng K.Fischer M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Z.H.Duan P.Egorov Y.H.Fan J.Fang JA.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan Z.L.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang T.Hussain F.H\"olzken N.H\"usken N.in der Wiesche M.Irshad J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui A.Kupsc W.K\"uhn J.J.Lane P.Larin L.Lavezzi T.T.Lei Z.H.Lei H.Leithoff M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li Y.G.Li Z.J.Li Z.X.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.P.Liao J.Libby A.Limphirat D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma X.T.Ma X.Y.Ma Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Malde A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak P.Patteri Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao J.J.Qin L.Q.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi R.S.Shi S.Y.Shi X.Shi X.D.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang Meng Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.Wei D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.C.Xu Z.P.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang T.Yang Y.Yang Y.F.Yang Y.F.Yang Y.X.Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu X.D.Yu C.Z.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang p.zhang Q.Y.Zhang S.H.Zhang Shulei Zhang X.D.Zhang X.M.Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao Lei Zhao M.G.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou J.Zhu K.Zhu K.J.Zhu L.Zhu L.X.Zhu S.H.Zhu S.Q.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 SCIE CAS CSCD 2024年第8期6-33,共28页
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays... Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay. 展开更多
关键词 BESIII D^(0)meson decays amplitude analysis CP-even fraction
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部