Cubic-shaped magnetic particles subjected to a dimensionless uniaxial anisotropy(Q=0.1)aligned with one of the crystallographic axes provide an ideal system for investigating magnetic equilibrium states.In this system...Cubic-shaped magnetic particles subjected to a dimensionless uniaxial anisotropy(Q=0.1)aligned with one of the crystallographic axes provide an ideal system for investigating magnetic equilibrium states.In this system,three fundamental magnetization configurations are identified:(i)the flower state,(ii)the twisted flower state,and(iii)the vortex state.This problem corresponds to standard problem No.3 proposed by the NIST Micromagnetics Modeling Group,widely adopted as a benchmark for validating computational micromagnetics methods.In this work,we approach the problem using a computational method based on direct dipolar interactions,in contrast to conventional techniques that typically compute the demagnetizing field via finite difference-based fast Fourier transform(FFT)methods,tensor grid approaches,or finite element formulations.Our results are compared with established literature data,focusing on the dimensionless parameterλ=L/l_(ex),where L is the cube edge length and l_(ex)is the exchange length of the material.To analyze equilibrium state transitions,we systematically varied the size L as a function of the simulation cell number N and intercellular spacing a,determining the criticalλvalue associated with configuration changes.Our simulations reveal that the transition between the twisted flower and vortex states occurs atλ≈8.45,consistent with values reported in the literature,validating our code(Grupo de Física da Matéeria Condensada-UFJF),and shows that this standard problem can be resolved using only interaction dipolar of a direct way without the need for sophisticated additional calculations.展开更多
基金CAPES,CNPq,and FAPEMIG(Brazilian Agencies)for their financial support。
文摘Cubic-shaped magnetic particles subjected to a dimensionless uniaxial anisotropy(Q=0.1)aligned with one of the crystallographic axes provide an ideal system for investigating magnetic equilibrium states.In this system,three fundamental magnetization configurations are identified:(i)the flower state,(ii)the twisted flower state,and(iii)the vortex state.This problem corresponds to standard problem No.3 proposed by the NIST Micromagnetics Modeling Group,widely adopted as a benchmark for validating computational micromagnetics methods.In this work,we approach the problem using a computational method based on direct dipolar interactions,in contrast to conventional techniques that typically compute the demagnetizing field via finite difference-based fast Fourier transform(FFT)methods,tensor grid approaches,or finite element formulations.Our results are compared with established literature data,focusing on the dimensionless parameterλ=L/l_(ex),where L is the cube edge length and l_(ex)is the exchange length of the material.To analyze equilibrium state transitions,we systematically varied the size L as a function of the simulation cell number N and intercellular spacing a,determining the criticalλvalue associated with configuration changes.Our simulations reveal that the transition between the twisted flower and vortex states occurs atλ≈8.45,consistent with values reported in the literature,validating our code(Grupo de Física da Matéeria Condensada-UFJF),and shows that this standard problem can be resolved using only interaction dipolar of a direct way without the need for sophisticated additional calculations.