In recent years,Peripheral blood smear is a generic analysis to assess the person’s health status.Manual testing of Peripheral blood smear images are difficult,time-consuming and is subject to human intervention and ...In recent years,Peripheral blood smear is a generic analysis to assess the person’s health status.Manual testing of Peripheral blood smear images are difficult,time-consuming and is subject to human intervention and visual error.This method encouraged for researchers to present algorithms and techniques to perform the peripheral blood smear analysis with the help of computer-assisted and decision-making techniques.Existing CAD based methods are lacks in attaining the accurate detection of abnormalities present in the images.In order to mitigate this issue Deep Convolution Neural Network(DCNN)based automatic classification technique is introduced with the classification of eight groups of peripheral blood cells such as basophil,eosinophil,lymphocyte,monocyte,neutrophil,erythroblast,platelet,myocyte,promyocyte and metamyocyte.The proposed DCNN model employs transfer learning approach and additionally it carries three stages such as pre-processing,feature extraction and classification.Initially the pre-processing steps are incorporated to eliminate noisy contents present in the image by using Histogram Equalization(HE).It is enclosed to improve an image contrast.In order to distinguish the dissimilar class and segmentation approach is carried out with the help of Fuzzy C-Means(FCM)model whereas its centroid point optimality method with Slap Swarm based optimization strategy.Moreover some specific set of Gray Level Co-occurrence Matrix(GLCM)features of the segmented images are extracted to augment the performance of proposed detection algorithm.Finally the extracted features are recorded by DCNN and the proposed classifier has the capability to extract their own features.Based on this the diverse set of classes are classified and distinguished from qualitative abnormalities found in the image.展开更多
Renewable energy production plays a major role in satisfying electricity demand.Wind power conversion is one of the most popular renewable energy sources compared to other sources.Wind energy conversion has two major ...Renewable energy production plays a major role in satisfying electricity demand.Wind power conversion is one of the most popular renewable energy sources compared to other sources.Wind energy conversion has two major types of generators such as the Permanent Magnet Synchronous Generator(PMSG)and the Doubly Fed Induction Generator(DFIG).The maximum power tracking algo-rithm is a crucial controller,a wind energy conversion system for generating maximum power in different wind speed conditions.In this article,the DFIG wind energy conversion system was developed in Matrix Laboratory(MATLAB)and designed a machine learning(ML)algorithm for the rotor and grid side converter.The ML algorithm has been developed and trained in a MATLAB environment.There are two types of learning algorithms such as supervised and unsupervised learning.In this research supervised learning is used to power the neural networks and analysis is made for various hidden layers and activation functions.Simulation results are assessed to demonstrate the efficiency of the proposed system.展开更多
文摘In recent years,Peripheral blood smear is a generic analysis to assess the person’s health status.Manual testing of Peripheral blood smear images are difficult,time-consuming and is subject to human intervention and visual error.This method encouraged for researchers to present algorithms and techniques to perform the peripheral blood smear analysis with the help of computer-assisted and decision-making techniques.Existing CAD based methods are lacks in attaining the accurate detection of abnormalities present in the images.In order to mitigate this issue Deep Convolution Neural Network(DCNN)based automatic classification technique is introduced with the classification of eight groups of peripheral blood cells such as basophil,eosinophil,lymphocyte,monocyte,neutrophil,erythroblast,platelet,myocyte,promyocyte and metamyocyte.The proposed DCNN model employs transfer learning approach and additionally it carries three stages such as pre-processing,feature extraction and classification.Initially the pre-processing steps are incorporated to eliminate noisy contents present in the image by using Histogram Equalization(HE).It is enclosed to improve an image contrast.In order to distinguish the dissimilar class and segmentation approach is carried out with the help of Fuzzy C-Means(FCM)model whereas its centroid point optimality method with Slap Swarm based optimization strategy.Moreover some specific set of Gray Level Co-occurrence Matrix(GLCM)features of the segmented images are extracted to augment the performance of proposed detection algorithm.Finally the extracted features are recorded by DCNN and the proposed classifier has the capability to extract their own features.Based on this the diverse set of classes are classified and distinguished from qualitative abnormalities found in the image.
文摘Renewable energy production plays a major role in satisfying electricity demand.Wind power conversion is one of the most popular renewable energy sources compared to other sources.Wind energy conversion has two major types of generators such as the Permanent Magnet Synchronous Generator(PMSG)and the Doubly Fed Induction Generator(DFIG).The maximum power tracking algo-rithm is a crucial controller,a wind energy conversion system for generating maximum power in different wind speed conditions.In this article,the DFIG wind energy conversion system was developed in Matrix Laboratory(MATLAB)and designed a machine learning(ML)algorithm for the rotor and grid side converter.The ML algorithm has been developed and trained in a MATLAB environment.There are two types of learning algorithms such as supervised and unsupervised learning.In this research supervised learning is used to power the neural networks and analysis is made for various hidden layers and activation functions.Simulation results are assessed to demonstrate the efficiency of the proposed system.