NiTi samples were hydrothermally treated in NaOH at 200℃ with different soaking times. The morphology of the surface layer formed was studied by scanning electron microscopy (SEM). The composition of the layer and th...NiTi samples were hydrothermally treated in NaOH at 200℃ with different soaking times. The morphology of the surface layer formed was studied by scanning electron microscopy (SEM). The composition of the layer and the major phases present were determined by energy-dispersive spectroscopy (EDS) and X-ray diffractometry (XRD), respectively. In contrast to the results reported by some authors, the surface layer was essentially Ni(OH)2 instead of being TiO2. The electrochemical behavior of the samples was studied by electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution at 23℃, and analyzed using a simplified Randle circuit consisting of a resistance R and a capacitance C in parallel. After hydrothermal treatment, R was increased by a factor ranging from 1.5 to 5.0 times, depending on the treatment time. The value of R of all the samples became steady within a period of less than 15 h. Results of the present study indicate that alkaline treatment leads to the growth of an insulating layer on NiTi, but the method is not suitable for surface modification of NiTi implants due to the enhanced Ni content in the surface layer.展开更多
Ni_(25)Ti_(50)Cu_(25) shape memory particle/Al matrix composite was prepared by hot pressing and further extrusion.The Ni_(25)Ti_(50)Cu_(25) particles embeded in Al matrix still keep B19 and B19 structure,and have a g...Ni_(25)Ti_(50)Cu_(25) shape memory particle/Al matrix composite was prepared by hot pressing and further extrusion.The Ni_(25)Ti_(50)Cu_(25) particles embeded in Al matrix still keep B19 and B19 structure,and have a good thermal-elastic martensitic transition with 6K thermal hysteresis,the phase transition temperatures remaining constant during cycling. The scratching force of Ni_(25)Ti_(50)Cu_(25) particle is two times that of Al matrix,When the scratching force is larger than 4.2N, the Ni_(25)Ti_(50)Cu_(25) particle is separated from Al matrix.展开更多
文摘NiTi samples were hydrothermally treated in NaOH at 200℃ with different soaking times. The morphology of the surface layer formed was studied by scanning electron microscopy (SEM). The composition of the layer and the major phases present were determined by energy-dispersive spectroscopy (EDS) and X-ray diffractometry (XRD), respectively. In contrast to the results reported by some authors, the surface layer was essentially Ni(OH)2 instead of being TiO2. The electrochemical behavior of the samples was studied by electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution at 23℃, and analyzed using a simplified Randle circuit consisting of a resistance R and a capacitance C in parallel. After hydrothermal treatment, R was increased by a factor ranging from 1.5 to 5.0 times, depending on the treatment time. The value of R of all the samples became steady within a period of less than 15 h. Results of the present study indicate that alkaline treatment leads to the growth of an insulating layer on NiTi, but the method is not suitable for surface modification of NiTi implants due to the enhanced Ni content in the surface layer.
文摘Ni_(25)Ti_(50)Cu_(25) shape memory particle/Al matrix composite was prepared by hot pressing and further extrusion.The Ni_(25)Ti_(50)Cu_(25) particles embeded in Al matrix still keep B19 and B19 structure,and have a good thermal-elastic martensitic transition with 6K thermal hysteresis,the phase transition temperatures remaining constant during cycling. The scratching force of Ni_(25)Ti_(50)Cu_(25) particle is two times that of Al matrix,When the scratching force is larger than 4.2N, the Ni_(25)Ti_(50)Cu_(25) particle is separated from Al matrix.