In this paper the problem of linear stability of a closed cylindrical shell under the action of both non-uniform temperature field and supersonic gas flow is considered.The stability conditions for the unperturbed sta...In this paper the problem of linear stability of a closed cylindrical shell under the action of both non-uniform temperature field and supersonic gas flow is considered.The stability conditions for the unperturbed state of the aerothermoelastic system are obtained.It is shown that,by the combined action of the temperature field and the ambient supersonic flow,the process of linear stability can be controlled and the temperature field affects significantly the critical flutter speed.展开更多
The design of the re-entry space vehicles and high-speed aircraft structures requires special attention to the non-linear thermoelastic and aerodynamic instabilities.The thermal effects are important since temperature...The design of the re-entry space vehicles and high-speed aircraft structures requires special attention to the non-linear thermoelastic and aerodynamic instabilities.The thermal effects are important since temperature environment influences significantly the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes.The dynamic behavior of a double-wedge lifting surface with combined freeplay and cubic stiffening structural nonlinearities in both plunging and pitching degrees-of-freedom(DOF) operating in supersonic/hypersonic flight speed regimes has been analyzed.In addition a third order piston theory aerodynamics(PTA) is used to evaluate the non-linear unsteady aerodynamic loads applied to the wing section.Loss of torsional stiffness that may be incurred by lifting surfaces subjected to axial stresses induced by aerodynamic heating is also considered.The aerodynamic heating effect is estimated based on the adiabatic wall temperature due to high speed airstreams.It is demonstrated that serious losses of torsional stiffness may occur in such lifting surfaces;the influence of various parameters such as flight condition,thickness ratio,freeplays and pitching stiffness nonlinearity are discussed.展开更多
基金supported by the State Committee on Science and Education of the Ministry of Education and Science of the Republic of Armenia within the framework of the research project (No. SCS 18T-2C149)
文摘In this paper the problem of linear stability of a closed cylindrical shell under the action of both non-uniform temperature field and supersonic gas flow is considered.The stability conditions for the unperturbed state of the aerothermoelastic system are obtained.It is shown that,by the combined action of the temperature field and the ambient supersonic flow,the process of linear stability can be controlled and the temperature field affects significantly the critical flutter speed.
基金the China Post Doctor National Fund (No.AD4122,2008)
文摘The design of the re-entry space vehicles and high-speed aircraft structures requires special attention to the non-linear thermoelastic and aerodynamic instabilities.The thermal effects are important since temperature environment influences significantly the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes.The dynamic behavior of a double-wedge lifting surface with combined freeplay and cubic stiffening structural nonlinearities in both plunging and pitching degrees-of-freedom(DOF) operating in supersonic/hypersonic flight speed regimes has been analyzed.In addition a third order piston theory aerodynamics(PTA) is used to evaluate the non-linear unsteady aerodynamic loads applied to the wing section.Loss of torsional stiffness that may be incurred by lifting surfaces subjected to axial stresses induced by aerodynamic heating is also considered.The aerodynamic heating effect is estimated based on the adiabatic wall temperature due to high speed airstreams.It is demonstrated that serious losses of torsional stiffness may occur in such lifting surfaces;the influence of various parameters such as flight condition,thickness ratio,freeplays and pitching stiffness nonlinearity are discussed.