期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas 被引量:2
1
作者 M.J.-E.Manuel B.Khiar +11 位作者 G.Rigon B.Albertazzi S.R.Klein F.Kroll F.-E.Brack T.Michel p.mabey S.Pikuz J.C.Williams M.Koenig A.Casner C.C.Kuranz 《Matter and Radiation at Extremes》 SCIE CAS CSCD 2021年第2期37-45,共9页
Blast-wave-driven hydrodynamic instabilities are studied in the presence of a background B-field through experiments and simulations in the high-energy-density(HED)physics regime.In experiments conducted at the Labora... Blast-wave-driven hydrodynamic instabilities are studied in the presence of a background B-field through experiments and simulations in the high-energy-density(HED)physics regime.In experiments conducted at the Laboratoire pour l’utilisation des lasers intenses(LULI),a laserdriven shock-tube platform was used to generate a hydrodynamically unstable interface with a prescribed sinusoidal surface perturbation,and short-pulse x-ray radiography was used to characterize the instability growth with and without a 10-T B-field.The LULI experiments were modeled in FLASH using resistive and ideal magnetohydrodynamics(MHD),and comparing the experiments and simulations suggests that the Spitzer model implemented in FLASH is necessary and sufficient for modeling these planar systems.These results suggest insufficient amplification of the seed B-field,due to resistive diffusion,to alter the hydrodynamic behavior.Although the ideal-MHD simulations did not represent the experiments accurately,they suggest that similar HED systems with dynamic plasma-β(=2μ_(0)ρv^(2)/B^(2))values of less than∼100 can reduce the growth of blast-wave-driven Rayleigh–Taylor instabilities.These findings validate the resistive-MHD FLASH modeling that is being used to design future experiments for studying B-field effects in HED plasmas. 展开更多
关键词 field. HYDRODYNAMIC INSTABILITIES
在线阅读 下载PDF
Triggering star formation:Experimental compression of a foam ball induced by Taylor–Sedov blast waves 被引量:1
2
作者 B.Albertazzi p.mabey +10 位作者 Th.Michel G.Rigon, J.R.Marques S.Pikuz S.Ryazantsev E.Falize L.Van Box Som J.Meinecke N.Ozaki G.Gregori M.Koenig 《Matter and Radiation at Extremes》 SCIE EI CAS CSCD 2022年第3期31-39,共9页
The interaction between a molecular cloud and an external agent(e.g.,a supernova remnant,plasma jet,radiation,or another cloud)is a common phenomenon throughout the Universe and can significantly change the star forma... The interaction between a molecular cloud and an external agent(e.g.,a supernova remnant,plasma jet,radiation,or another cloud)is a common phenomenon throughout the Universe and can significantly change the star formation rate within a galaxy.This process leads to fragmentation of the cloud and to its subsequent compression and can,eventually,initiate the gravitational collapse of a stable molecular cloud.It is,however,difficult to study such systems in detail using conventional techniques(numerical simulations and astronomical observations),since complex interactions of flows occur.In this paper,we experimentally investigate the compression of a foam ball by Taylor–Sedov blast waves,as an analog of supernova remnants interacting with a molecular cloud.The formation of a compression wave is observed in the foam ball,indicating the importance of such experiments for understanding how star formation is triggered by external agents. 展开更多
关键词 CLOUD GALAXY SUPERNOVA
在线阅读 下载PDF
Analytical modelling of the expansion of a solid obstacle interacting with a radiative shock
3
作者 Th.Michel E.Falize +19 位作者 B.Albertazzi G.Rigon Y.Sakawa T.Sano H.Shimogawara R.Kumar T.Morita C.Michaut A.Casner R Barroso p.mabey Y.Kuramitsu S.Laffite L.Van Box Som G.Gregori R.Kodama N.Ozaki P.Tzeferacos D.Lamb M.Koenig 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2018年第2期123-132,共10页
In this paper, we present a model characterizing the interaction of a radiative shock(RS) with a solid material, as described in a recent paper(Koenig et al., Phys. Plasmas, 24, 082707(2017)), the new model is then re... In this paper, we present a model characterizing the interaction of a radiative shock(RS) with a solid material, as described in a recent paper(Koenig et al., Phys. Plasmas, 24, 082707(2017)), the new model is then related to recent experiments performed on the GEKKO XII laser facility. The RS generated in a xenon gas cell propagates towards a solid obstacle that is ablated by radiation coming from the shock front and the radiative precursor, mimicking processes occurring in astrophysical phenomena. The model presented here calculates the dynamics of the obstacle expansion,which depends on several parameters, notably the geometry and the temperature of the shock. All parameters required for the model have been obtained from experiments. Good agreement between experimental data and the model is found when spherical geometry is taken into account. As a consequence, this model is a useful and easy tool to infer parameters from experimental data(such as the shock temperature), and also to design future experiments. 展开更多
关键词 high energy density physics laser–plasmas interaction modelling plasmas astrophysics plasma physics radiative hydrodynamics radiative shock
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部