We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet[Marquès et al.,Phys.Plasmas 28,023103(2021)].In a continuation of this nu...We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet[Marquès et al.,Phys.Plasmas 28,023103(2021)].In a continuation of this numerical work,we study experimentally the influence of the tailoring on proton acceleration driven by a high-intensity picosecond laser in three cases:without tailoring,by tailoring only the entrance side of the picosecond laser,and by tailoring both sides of the gas jet.Without tailoring,the acceleration is transverse to the laser axis,with a low-energy exponential spectrum,produced by Coulomb explosion.When the front side of the gas jet is tailored,a forward acceleration appears,which is significantly enhanced when both the front and back sides of the plasma are tailored.This forward acceleration produces higher-energy protons,with a peaked spectrum,and is in good agreement with the mechanism of collisionless shock acceleration(CSA).The spatiotemporal evolution of the plasma profile is characterized by optical shadowgraphy of a probe beam.The refraction and absorption of this beam are simulated by post-processing 3D hydrodynamic simulations of the plasma tailoring.Comparison with the experimental results allows estimation of the thickness and near-critical density of the plasma slab produced by tailoring both sides of the gas jet.These parameters are in good agreement with those required for CSA.展开更多
We propose a semi-analytical modeling of smoothed laser beam deviation induced by plasma flows.Based on a Gaussian description of speckles,the model includes spatial,temporal,and polarization smoothing techniques,thro...We propose a semi-analytical modeling of smoothed laser beam deviation induced by plasma flows.Based on a Gaussian description of speckles,the model includes spatial,temporal,and polarization smoothing techniques,through fits coming from hydrodynamic simulations with a paraxial description of electromagnetic waves.This beam bending model is then incorporated into a ray tracing algorithm and carefully validated.When applied as a post-process to the propagation of the inner cone in a full-scale simulation of a National Ignition Facility(NIF)experiment,the beam bending along the path of the laser affects the refraction conditions inside the hohlraum and the energy deposition,and could explain some anomalous refraction measurements,namely,the so-called glint observed in some NIF experiments.展开更多
We report results and modelling of an experiment performed at the Target Area West Vulcan laser facility,aimed at investigating laser±plasma interaction in conditions that are of interest for the shock ignition s...We report results and modelling of an experiment performed at the Target Area West Vulcan laser facility,aimed at investigating laser±plasma interaction in conditions that are of interest for the shock ignition scheme in inertial confinement fusion(ICF),that is,laser intensity higher than 10^(16) W/cm^(2) impinging on a hot(T>1 keV),inhomogeneous and long scalelength pre-formed plasma.Measurements show a significant stimulated Raman scattering(SRS)backscattering(;%-20%of laser energy)driven at low plasma densities and no signatures of two-plasmon decay(TPD)/SRS driven at the quarter critical density region.Results are satisfactorily reproduced by an analytical model accounting for the convective SRS growth in independent laser speckles,in conditions where the reflectivity is dominated by the contribution from the most intense speckles,where SRS becomes saturated.Analytical and kinetic simulations well reproduce the onset of SRS at low plasma densities in a regime strongly affected by non-linear Landau damping and by filamentation of the most intense laser speckles.The absence of TPD/SRS at higher densities is explained by pump depletion and plasma smoothing driven by filamentation.The prevalence of laser coupling in the low-density profile justifies the low temperature measured for hot electrons(7-12 keV),which is well reproduced by numerical simulations.展开更多
基金funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No.871124 Laserlab-Europeby Grant No.ANR-17-CE30-0026-Pinnacle from the Agence Nationale de la Recherche.
文摘We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet[Marquès et al.,Phys.Plasmas 28,023103(2021)].In a continuation of this numerical work,we study experimentally the influence of the tailoring on proton acceleration driven by a high-intensity picosecond laser in three cases:without tailoring,by tailoring only the entrance side of the picosecond laser,and by tailoring both sides of the gas jet.Without tailoring,the acceleration is transverse to the laser axis,with a low-energy exponential spectrum,produced by Coulomb explosion.When the front side of the gas jet is tailored,a forward acceleration appears,which is significantly enhanced when both the front and back sides of the plasma are tailored.This forward acceleration produces higher-energy protons,with a peaked spectrum,and is in good agreement with the mechanism of collisionless shock acceleration(CSA).The spatiotemporal evolution of the plasma profile is characterized by optical shadowgraphy of a probe beam.The refraction and absorption of this beam are simulated by post-processing 3D hydrodynamic simulations of the plasma tailoring.Comparison with the experimental results allows estimation of the thickness and near-critical density of the plasma slab produced by tailoring both sides of the gas jet.These parameters are in good agreement with those required for CSA.
文摘We propose a semi-analytical modeling of smoothed laser beam deviation induced by plasma flows.Based on a Gaussian description of speckles,the model includes spatial,temporal,and polarization smoothing techniques,through fits coming from hydrodynamic simulations with a paraxial description of electromagnetic waves.This beam bending model is then incorporated into a ray tracing algorithm and carefully validated.When applied as a post-process to the propagation of the inner cone in a full-scale simulation of a National Ignition Facility(NIF)experiment,the beam bending along the path of the laser affects the refraction conditions inside the hohlraum and the energy deposition,and could explain some anomalous refraction measurements,namely,the so-called glint observed in some NIF experiments.
基金financial support from the LASERLAB-EUROPE Access to Research Infrastructure activity within the EC’s seventh Framework Program(Application No.18110033)carried out within the framework of the EUROfusion Enabling research projects AWP19-20-ENR-IFE19.CEA01 and AWP21-ENR-01-CEA-02+2 种基金funding from the Euratom research and training programme 20192020 and 2021-2025 under grant No.633053financial support from the CNR-funded Italian research Network ELI-Italy(D.M.No.63108.08.2016)the Czech Ministry of Education,Youth and Sports,project LTT17015。
文摘We report results and modelling of an experiment performed at the Target Area West Vulcan laser facility,aimed at investigating laser±plasma interaction in conditions that are of interest for the shock ignition scheme in inertial confinement fusion(ICF),that is,laser intensity higher than 10^(16) W/cm^(2) impinging on a hot(T>1 keV),inhomogeneous and long scalelength pre-formed plasma.Measurements show a significant stimulated Raman scattering(SRS)backscattering(;%-20%of laser energy)driven at low plasma densities and no signatures of two-plasmon decay(TPD)/SRS driven at the quarter critical density region.Results are satisfactorily reproduced by an analytical model accounting for the convective SRS growth in independent laser speckles,in conditions where the reflectivity is dominated by the contribution from the most intense speckles,where SRS becomes saturated.Analytical and kinetic simulations well reproduce the onset of SRS at low plasma densities in a regime strongly affected by non-linear Landau damping and by filamentation of the most intense laser speckles.The absence of TPD/SRS at higher densities is explained by pump depletion and plasma smoothing driven by filamentation.The prevalence of laser coupling in the low-density profile justifies the low temperature measured for hot electrons(7-12 keV),which is well reproduced by numerical simulations.